
 JTRS-5000SEC
Security API Service Definition

rev. 3.0

Security Supplement
to the

Software Communications Architecture Specification

Attachment 1

Security Application Program Interface
Service Definition

 JTRS-5000SEC
Security API Service Definition

rev. 3.0

Revision Summary
1.0 Initial Release
1.1 No Changes
2.2.1 Document numbering change for consistency with SCA main document numbering.

Incorporate approved Change Proposals, numbers 77, 61, 63, 66
3.0 No change.

 JTRS-5000SEC
Security API Service Definition

rev. 3.0

Table of Contents

1 INTRODUCTION...1-1
1.1 OVERVIEW... 1-1
1.2 MODES OF SERVICE. ... 1-1

1.2.1 Fill Modes... 1-1
1.2.2 Crypto Channel Modes. .. 1-1

1.3 SERVICE STATES. ... 1-2
1.4 REFERENCED DOCUMENTS... 1-2

2 UUID...2-1

3 SERVICES...3-1
3.1 GAINING ACCESS TO SECURITY SERVICES. .. 3-43-4
3.2 SECURITY.. 3-53-4

3.2.1 Management. ... 3-53-4
3.3 FILL... 3-63-5

3.3.1 Port and Port User Services. ... 3-63-5
3.3.2 Bus Service. ... 3-93-8
3.3.3 Management Service.. 3-93-8

3.4 ALGORITHM. .. 3-113-10
3.4.1 Management Service.. 3-113-10

3.5 CERTIFICATE.. 3-123-11
3.5.1 Management Service.. 3-123-11

3.6 CRYPTO. .. 3-123-11
3.6.1 Control Service. ... 3-123-11
3.6.2 Encrypt/Decrypt Service.. 3-153-14

3.7 KEY. .. 3-193-18
3.7.1 Management Service.. 3-193-18

3.8 TRANSEC. .. 3-213-20
3.8.1 Control Service. ... 3-213-20
3.8.2 Key Stream Service. ... 3-233-22
3.8.3 Management Service.. 3-243-23

3.9 POLICY... 3-253-24
3.9.1 Management Service.. 3-263-25

3.10 INTEGRITY AND AUTHENTICATION.. 3-273-26
3.10.1 Control and Digital Signatures Provider Services.. 3-273-26

3.11 ALARM... 3-303-29
3.11.1 User. .. 3-313-30

3.12 TIME. .. 3-313-30
3.12.1 Management Service.. 3-313-30

3.13 GPS. ... 3-333-32
3.13.1 Management. ... 3-333-32

i

 JTRS-5000SEC
Security API Service Definition

rev. 3.0
4 SERVICE PRIMITIVES..4-1

4.1 SECURITY... 4-2
4.1.1 ZEROIZE_ALL. .. 4-2

4.2 FILL.. 4-3
4.2.1 FILL_PORT_CONFIGURE. .. 4-4
4.2.2 FILL_PORT_ENABLE. .. 4-5
4.2.3 FILL_PORT_DISABLE. ... 4-6
4.2.4 FILL_PORT_LOAD.. 4-7
4.2.5 FILL_PORT_SIGNAL_CONNECT. ... 4-8
4.2.6 FILL_PORT_SIGNAL_LOAD. ... 4-9
4.2.7 FILL_PORT_SIGNAL_ASSIGN_ID. .. 4-10
4.2.8 FILL_BUS_LOAD. ... 4-11
4.2.9 FILL_ZEROIZE. ... 4-12
4.2.10 FILL_ZEROIZE_ALL. .. 4-13
4.2.11 FILL_GET_IDS. ... 4-14
4.2.12 FILL_EXPIRY... 4-15

4.3 ALGORITHM. ... 4-16
4.3.1 ALG_ZEROIZE... 4-16
4.3.2 ALG_ZEROIZE_ALL.. 4-16
4.3.3 ALG_GET_IDS. .. 4-16
4.3.4 ALG_EXPIRY. .. 4-16

4.4 CERTIFICATE... 4-17
4.4.1 CERT_ZEROIZE. ... 4-17
4.4.2 CERT_ZEROIZE_ALL.. 4-17
4.4.3 CERT_GET_IDS... 4-17
4.4.4 CERT_EXPIRY. .. 4-17

4.5 CRYPTO. ... 4-18
4.5.1 CRYPT_CREATE_CHAN... 4-20
4.5.2 CRYPT_GET_CHAN_CONFIG. .. 4-23
4.5.3 CRYPT_DESTROY_CHAN. ... 4-24
4.5.4 CRYPT_START_CHAN. ... 4-25
4.5.5 CRYPT_STOP_CHAN. ... 4-26
4.5.6 CRYPT_RESET_CHAN. ... 4-27
4.5.7 CRYPT_RESET... 4-28
4.5.8 CRYPT_ENCRYPT. .. 4-29
4.5.9 CRYPT_DECRYPT. .. 4-30
4.5.10 CRYPT_ENCRYPT_WITH_ID. .. 4-31
4.5.11 CRYPT_DECRYPT_WITH_ID. .. 4-32
4.5.12 CRYPT_TRANSFORM_REQ.. 4-33
4.5.13 CRYPT_TRANSFORM_REQ_WITH_ID.. 4-34

4.6 KEY. ... 4-35
4.6.1 KEY_ZEROIZE. .. 4-35
4.6.2 KEY_ZEROIZE_ALL. ... 4-35
4.6.3 KEY_GET_IDS. .. 4-35
4.6.4 KEY_EXPIRY.. 4-35
4.6.5 KEY_UPDATE.. 4-36

ii

 JTRS-5000SEC
Security API Service Definition

rev. 3.0
4.6.6 KEY_GET_UPDATE_COUNT... 4-37
4.6.7 KEY_STORE_KEY.. 4-38

4.7 TRANSEC. ... 4-39
4.7.1 TRAN_CREATE_CHAN. .. 4-40
4.7.2 TRAN_GET_CHAN_CONFIG. .. 4-42
4.7.3 TRAN_DESTROY_CHAN... 4-43
4.7.4 TRAN_GEN_KEY_STREAM. ... 4-44
4.7.5 TRAN_GEN_NEXT_KEY_STREAM. ... 4-46
4.7.6 TRAN_ZEROIZE. ... 4-47
4.7.7 TRAN_ZEROIZE_ALL.. 4-47
4.7.8 TRAN_GET_IDS... 4-47
4.7.9 TRAN_EXPIRY. .. 4-47
4.7.10 TRAN_STORE. ... 4-48
4.7.11 TRAN_GET_FILL... 4-49

4.8 POLICY.. 4-50
4.8.1 POL_ZEROIZE... 4-50
4.8.2 POL_ZEROIZE_ALL.. 4-50
4.8.3 POL_GET_IDS. .. 4-50
4.8.4 POL_EXPIRY. .. 4-50
4.8.5 POL_GET_POLICY. .. 4-51

4.9 INTEGRITY AND AUTHENTICATION... 4-52
4.9.1 IA_CREATE_CONTEXT. ... 4-53
4.9.2 IA_DESTROY_CONTEXT ... 4-54
4.9.3 IA_SIGN_FILE. .. 4-55
4.9.4 IA_VERIFY_FILE... 4-56
4.9.5 IA_HASH. ... 4-57
4.9.6 IA_SIGN_HASH. .. 4-58
4.9.7 IA_VERIFY_HASH. .. 4-59

4.10 ALARM.. 4-60
4.10.1 ALARM_SIGNAL.. 4-62

4.11 TIME. ... 4-63
4.11.1 TIME_SET_TOD .. 4-64
4.11.2 TIME_GET_TOD. .. 4-65
4.11.3 TIME_SET_DATE. ... 4-66
4.11.4 TIME_GET_DATE. .. 4-67

4.12 GPS. .. 4-68
4.12.1 GPS_ZEROIZE. .. 4-68
4.12.2 GPS_ZEROIZE_ALL. ... 4-68
4.12.3 GPS_GET_IDS. .. 4-68
4.12.4 GPS_EXPIRY.. 4-68

5 ALLOWABLE SEQUENCE OF SERVICE PRIMITIVES. ..5-1
5.1 FILL STATES. ... 5-1
5.2 CRYPTO CHANNEL STATES.. 5-25-3
5.3 TRANSEC CHANNEL STATES. .. 5-65-14
5.4 INTEGRITY AND AUTHENTICATION STATES. ... 5-75-15

iii

 JTRS-5000SEC
Security API Service Definition

rev. 3.0

APPENDIX A PRECEDENCE OF SERVICE PRIMITIVES..A-1

APPENDIX B SERVICE USER GUIDELINES ..B-1

APPENDIX C SERVICE PROVIDER-SPECIFIC INFORMATION...................................C-1

APPENDIX D IDL...D-1

List of Figures
Figure 3-1. JTRS Security Service Groups .. 3-23-1
Figure 3-2. JTRS Security Device.. 3-53-4
Figure 3-3. Sequence Diagram: Zeroizing all Elements within a Security Service 3-53-5
Figure 3-4. Sequence Diagram: DS-101 or RS-232 Fill using Port and Port User Services...... 3-63-6
Figure 3-5. Sequence Diagram: DS-102 Fill using Port and Port User Services 3-83-7
Figure 3-6. Sequence Diagram: Filling the Radio from a File using the Bus Service 3-93-8
Figure 3-7. Sequence Diagram: Zeroizing an Element using the Management Service 3-103-9
Figure 3-8. Sequence Diagram: Zeroizing all Elements using the Management Service 3-103-9
Figure 3-9. Sequence Diagram: Getting the Identifiers of all Elements using the Management

Service.. 3-113-10
Figure 3-10. Sequence Diagram: Getting Expiration Info using the Fill Management Service.

3-113-

10
Figure 3-11. Sequence Diagram: Creating a Channel using the Crypto Control Service 3-123-11
Figure 3-12. Sequence Diagram: Destroying a Channel using the Crypto Control Service .. 3-133-12
Figure 3-13. Sequence Diagram: Getting the Configuration of a Crypto Channel using the Crypto

Control Service .. 3-133-12
Figure 3-14. Sequence Diagram: Starting a Crypto Channel using the Crypto Control Service.

3-

143-13
Figure 3-15. Sequence Diagram: Stopping a Crypto Channel using the Crypto Control Service

3-

143-13
Figure 3-16. Sequence Diagram: Resetting a Crypto Channel using the Crypto Control Service....

3-

153-14
Figure 3-17. Sequence Diagram: Resetting the Cryptographic Subsystem using the Crypto Control

Service.. 3-153-14
Figure 3-18. Sequence Diagram: Same Side Encryption using the Encrypt/Decrypt Service ...

3-163-

15
Figure 3-19. Sequence Diagram: Same Side Decryption using the Encrypt Decrypt Service ...

3-173-

16
Figure 3-20. Same Side Encryption with Channel Identifier using the Encrypt/Decrypt Service

3-

173-16
Figure 3-21. Same Side Decryption with Channel Identifier using the Encrypt/Decrypt Service

3-

183-17
Figure 3-22. Sequence Diagram: Encryption/Decryption using the Encrypt/ Decrypt Service .

3-183-

17

iv

 JTRS-5000SEC
Security API Service Definition

rev. 3.0
Figure 3-23. Sequence Diagram: Encryption/Decryption with Channel Identifier using the

Encrypt/Decrypt Service .. 3-193-18
Figure 3-24. Sequence Diagram: Storing a DS-102 Key using the Key Management Service.

3-203-

19
Figure 3-25. Sequence Diagram: Updating a Key using the Key Management Service........ 3-203-19
Figure 3-26. Sequence Diagram: Getting the Update Count of a Key using the Key Management

Service.. 3-213-20
Figure 3-27. Sequence Diagram: Creating a TRANSEC Channel (Key Stream) using the

TRANSEC Control Service ... 3-223-21
Figure 3-28. Sequence Diagram: Getting a TRANSEC Channel Configuration using the TRANSEC

Control Service .. 3-223-21
Figure 3-29. Sequence Diagram: Destroying a TRANSEC Channel using the TRANSEC Control

Service.. 3-233-22
Figure 3-30. Sequence Diagram: Generating a Key Stream with a New Seed using the TRANSEC

Key Stream Service.. 3-233-22
Figure 3-31. Sequence Diagram: Generating a Key Stream without a New Seed using the

TRANSEC Key Stream Service. ... 3-243-23
Figure 3-32. Sequence Diagram: Storing DS-102 TRANSEC Information using the TRANSEC

Management Service.. 3-243-23
Figure 3-33. Sequence Diagram: Getting Unclassified TRANSEC Fill Info using the TRANSEC

Management Service.. 3-253-24
Figure 3-34. Security Policies and Bypass ... 3-263-25
Figure 3-35. Sequence Diagram: Getting a Security Policy using the Policy Management Service.

3-

273-26
Figure 3-36. Sequence Diagram: Signing a File... 3-273-26
Figure 3-37. Sequence Diagram: Verifying a File ... 3-283-27
Figure 3-38. Sequence Diagram: Generating and Signing a Hash. .. 3-293-28
Figure 3-39. Sequence Diagram: Verifying a Digital Signature .. 3-303-29
Figure 3-40. Sequence Diagram: Signaling a Crypto Alarm.. 3-313-30
Figure 3-41. Sequence Diagram: Setting Time using the Time Management Service 3-313-30
Figure 3-42. Sequence Diagram: Getting Time using the Time Management Service.......... 3-323-31
Figure 3-43. Sequence Diagram: Setting Date using the Time Management Service 3-323-31
Figure 3-44. Sequence Diagram: Getting Date using the Time Management Service........... 3-333-32
Figure 4-1. Class Diagram: JTRS Security Common Types... 4-1
Figure 4-2. Class Diagram: JTRS Security Management Service... 4-2
Figure 4-3. Class Diagram: Fill Services... 4-3
Figure 4-4. Class Diagram: Algorithm Management Service ... 4-16
Figure 4-5. Class Diagram: Certificate Management Service ... 4-17
Figure 4-6. Class Diagram: Crypto Control Service ... 4-18
Figure 4-7. Class Diagram: Encrypt/Decrypt Services ... 4-19
Figure 4-8. Class Diagram: Key Management Service ... 4-35
Figure 4-9. Class Diagram: TRANSEC Services.. 4-39
Figure 4-10. Class Diagram: Policy Management Service.. 4-50
Figure 4-11. Class Diagram: Integrity and Authentication Services... 4-52
Figure 4-12. Class Diagram: Alarm Type Definitions .. 4-60
Figure 4-13. Class Diagram: Alarm Service ... 4-61

v

 JTRS-5000SEC
Security API Service Definition

rev. 3.0
Figure 4-14. Class Diagram: Time Management Service ... 4-63
Figure 4-15. Class Diagram: GPS Management Service .. 4-68
Figure 5-1. Fill State Transitions.. 5-25-3
Figure 5-2. State Diagram: Crypto Channel State Transitions ... 5-55-13
Figure 5-3. State Diagram: TRANSEC Channel State Transitions.. 5-65-14
Figure 5-4. State Diagram: Integrity and Authentication Context State Transitions 5-75-15

vi

 JTRS-5000SEC
Security API Service Definition

rev. 3.0

List of Tables
Table 3-1. Cross-Reference of Services and Primitives. ... 3-2
Table 3-2. Encrypt/Decrypt Primitive Cross-reference Table.. 3-163-15
Table 5-1. Fill States.. 5-1
Table 5-2. Crypto Channel States... 5-55-12
Table 5-3. TRANSEC Channel States.. 5-65-14
Table 5-4. Integrity and Authentication States ... 5-75-15

vii

 JTRS-5000SEC
Security API Service Definition

rev. 3.0

1 INTRODUCTION.

1.1 OVERVIEW.
This document specifies the application program interfaces (APIs) for security services that are
required in a secure JTRS-compliant radio.

1.2 MODES OF SERVICE.
The JTRS security service does not identify global modes but does identify modes within certain
services. The following paragraphs enumerate the modes defined this document.

1.2.1 Fill Modes.
The security API defines four modes for filling a radio. Three of the modes are entered by
configuring the fill port and are mutually exclusive for that port. They are DS-101, DS-102 and
RS-232. The fourth mode fills the radio from a file that does not enter the system through the fill
port.

1.2.1.1 DS-101 Fill Mode.
The DS-101 fill mode supports the DS-101 fill protocol at the fill port. This mode is essentially
autonomous once the information load has commenced. The fill information may contain
multiple keys, algorithms and TRANSEC information.

1.2.1.2 DS-102 Fill Mode.
The DS-102 fill mode supports the DS-102 fill protocol at the fill port. This mode requires
human intervention and the API is defined to reflect this.

1.2.1.3 RS-232 Fill Mode.
The DS-102 fill mode supports the DS-102 fill protocol at the fill port. This mode is similar to
the Bus Fill mode. A file is transferred through the fill port.

1.2.1.4 Bus Fill Mode.
The Bus fill mode supports input of fill information from a file which enters the system like
other software. The file may contain keys, TRANSEC and other information in an encrypted
file. This fill is passed to the cryptographic module using the Bus service.

1.2.2 Crypto Channel Modes.
When a crypto channel is created it is created to operate in one of five modes. The five modes
are defined in the following paragraphs.

1.2.2.1 Simplex Receive Mode.
The channel is configured for received only. The crypto does not allocate any resources to
support transmit.

1.2.2.2 Half-Duplex Mode.
The channel is configured for transmit and receive. The crypto allocates its resources to support
both transmit and receive, but not simultaneously.

 1-1

 JTRS-5000SEC
Security API Service Definition

rev. 3.0
1.2.2.3 Full-Duplex Mode.
The channel is configured for transmit and receive. The crypto allocates its resources to support
both transmit and receive simultaneously.

1.2.2.4 Red Side Mode.
The channel is configured for red side only behavior. The crypto allocates its resources such that
the results of encryption or decryption of data entering the red side exit on the red side.

1.2.2.5 Black Side Mode.
The channel is configured for black side only behavior. The crypto allocates its resources such
that the results of encryption or decryption of data entering the black side exit on the black side.

1.3 SERVICE STATES.
States are described in section 5.

1.4 REFERENCED DOCUMENTS.
None.

 1-2

 JTRS-5000SEC
Security API Service Definition

rev. 3.0

2 UUID.
To be assigned upon formal release of this document.

 2-1

 JTRS-5000SEC
Security API Service Definition

rev. 3.0

 2-2

 JTRS-5000SEC
Security API Service Definition

rev. 3.0

3 SERVICES.
The entirety of the JTRS Security Service can logically be represented as composed of service
groups. The Unified Modeling Language (UML) package diagram in
depicts the JTRS Security Service and its service groups as packages. Each of these groups
represents a functional area of security that directly or indirectly supports secure JTRS radio
operation. Each functional group contains one or more related services. The service groups also
provide naming scope for services within different groups that are related. An example of this is
a management service. Several of the service groups contain a management service. The
general behavior of this service is the same across certain groups. What differentiates the
specific behavior is the type of element being managed, which is identified by the service group
(e.g. Key).

Figure 3-1Figure 3-1

 3-1

 JTRS-5000SEC
Security API Service Definition

rev. 3.0

Alarm
(from JTRSSecurity)

Algorithm
(from JTRSSecurity)

Crypto
(from JTRSSecurity)

Fill
(from JTRSSecurity)

Certificate
(from JTRSSecurity)

GPS
(from JTRSSecurity)

IandA
(from JTRSSecurity)

Key
(from JTRSSecurity)

Policy
(from JTRSSecurity)

Time
(from JTRSSecurity)

Transec
(from JTRSSecurity)

JTRSSecurity

Figure 3-1. JTRS Security Service Groups

The individual primitives that may flow between the Service User and Service Provider define
each service within a service group. The services and primitives are tabulated in

 and described more fully in the remainder of this section.
Table 3-1Table

3-1

Table 3-1. Cross-Reference of Services and Primitives.

Service Group Service Primitives
Security Management ZEROIZE_ALL
Fill

Port FILL_PORT_CONFIGURE,
FILL_PORT_ENABLE,
FILL_PORT_DISABLE,
FILL_PORT_LOAD

 3-2

 JTRS-5000SEC
Security API Service Definition

rev. 3.0
Service Group Service Primitives

Port User FILL_ PORT_SIGNAL_ASSIGN_ID,
FILL_ PORT_SIGNAL_LOAD,
FILL_ PORT_SIGNAL_CONNECT,

Bus FILL_BUS_LOAD
Management FILL_ZEROIZE,

FILL_ZEROIZE_ALL,
FILL_GET_IDS,
FILL_EXPIRY

Algorithm Management ALG_ZEROIZE,
ALG_ZEROIZE_ALL,
ALG_GET_IDS,
ALG_EXPIRY

Certificate Management CERT_ZEROIZE,
CERT_ZEROIZE_ALL,
CERT_GET_IDS,
CERT_EXPIRY

Control CRYPT_CREATE_CHAN,
CRYPT_DESTROY_CHAN,
CRYPT_GET_CHAN_CONFIG,
CRYPT_START_CHAN,
CRYPT_STOP_CHAN,
CRYPT_RESET_CHAN,
CRYPT_RESET

Crypto

Encrypt/Decrypt CRYPT_ENCRYPT,
CRYPT_DECRYPT,
CRYPT_ENCRYPT_WITH_ ID,
CRYPT_DECRYPT_WITH_ ID,
CRYPT_TRANSFORM_REQ,
CRYPT_TRANSFORM_REQ_WITH_ID

Key Management KEY_ZEROIZE,
KEY_ZEROIZE_ALL,
KEY_GET_IDS,
KEY_EXPIRY,
KEY_UPDATE,
KEY_GET_UPDATE_COUNT,
KEY_STORE_KEY

Control TRAN_CREATE_CHAN,
TRAN_GET_CHAN_CONFIG,
TRAN_DESTROY_CHAN

TRANSEC

Key Stream TRAN_GEN_KEY_STREAM,
TRAN_GEN_NEXT_KEY_STREAM

 3-3

 JTRS-5000SEC
Security API Service Definition

rev. 3.0
Service Group Service Primitives

Management TRAN_ZEROIZE,
TRAN_ZEROIZE_ALL,
TRAN_GET_IDS,
TRAN_EXPIRY,
TRAN_STORE ,
TRAN_GET_FILL

Policy Management POL_ZEROIZE,
POL_ZEROIZE_ALL,
POL_GET_IDS,
POL_EXPIRY,
POL_GET_POLICY

Control IA_CREATE_CONTEXT,
IA_DESTROY_CONTEXT

Integrity and
Authentication

Digital Signatures IA_SIGN_FILE,
IA_VERIFY_FILE,
IA_HASH,
IA_SIGN_HASH,
IA_VERIFY_HASH

Alarm User ALARM_SIGNAL
Time Management TIME_SET_TOD,

TIME_GET_TOD,
TIME_SET_DATE,
TIME_GET_DATE

GPS Management GPS_ZEROIZE,
GPS_ZEROIZE_ALL,
GPS_GET_IDS,
GPS_EXPIRY,
GPS_STORE ,
GPS_GET_FILL

3.1 GAINING ACCESS TO SECURITY SERVICES.
Figure 3-2Figure 3-2 shows an SCA component which is a CF::Device. The device is a logical
representation of a cryptographic subsystem. The device has several ports. Each port represents
a security service. For example the Key Management Service is at one port while the Crypto
Control Service is at another. Each of these ports has an identifier. When a Security Service
User needs to gain access to a service it invokes the getPort operation on the security device with
the port identifier as input. The getPort operation returns the object reference of the service
provider which can then be passed to the service user through the CF::Port::connectPort
operation. The service user can then invoke the primitives that comprise the service.

 3-4

 JTRS-5000SEC
Security API Service Definition

rev. 3.0

Security Device

Ports

Figure 3-2. JTRS Security Device

3.2 SECURITY.
Security at the top level has one service, a management service.

3.2.1 Management.
Figure 3-3Figure 3-3 illustrates a Service User invoking the ZEROIZE_ALL primitive of the
Security Management Service. The ZEROIZE_ALL primitive zeroizes all elements of fill
information. It is equivalent to invoking the individual zeroize all primitives of the Algorithm,
Certificate, Key, Policy and TRANSEC Management Services.

Security Management
Service User

 : (Manager)

1. ZEROIZE_ALL

Figure 3-3. Sequence Diagram: Zeroizing all Elements within a Security Service

 3-5

 JTRS-5000SEC
Security API Service Definition

rev. 3.0
3.3 FILL.
The fill services defined in the security API consist of services to get fill information into a JTR
and to manage that information.

3.3.1 Port and Port User Services.
Figure 3-4Figure 3-4 shows a sequence diagram of a DS-101 or RS-232 type fill using the Port
and Port User services. The Port service is implemented by the security service. The Port User
service is implemented by the user of the security service (e.g. the human machine interface
(HMI) software).

 : PortUser : (Port)

1. FILL_PORT_CONFIGURE

4. FILL_PORT_LOAD

6. FILL_PORT_DISABLE

1.1. FILL_PORT_SIGNAL_CONNECT

2. User Connects Device

5. User Disconnects Device

3. FILL_PORT_ENABLE

3.1. FILL_PORT_SIGNAL_LOAD

Figure 3-4. Sequence Diagram: DS-101 or RS-232 Fill using Port and Port User Services

1. The Port User invokes the FILL_PORT_CONFIGURE primitive that configures the
Fill Port for a mode of operation which in this case is DS-101 or RS-232.

1.1 The Fill Port invokes the FILL_PORT_SIGNAL_CONNECT primitive on the Port
User to notify the user to connect the fill device.

 3-6

 JTRS-5000SEC
Security API Service Definition

rev. 3.0
2. The user connects the fill device to the Fill Port.

3. The Port User enables the Fill Port by invoking the FILL_PORT_ENABLE primitive
on the Port.

3.1 The Fill Port invokes the FILL_PORT_SIGNAL_LOAD primitive on the Fill Port
User to notify the user to begin the loading from the fill device.

4. The Fill Port User invokes the FILL_PORT_LOAD primitive to start the load through
the fill port.

5. The user disconnects the fill device from the Fill Port.

6. The Port User invokes the FILL_PORT_DISABLE primitive on the Fill Port.

Figure 3-5Figure 3-5 shows a sequence diagram of a DS-102 fill using the Port and Port User
services. The Key Management Service is included for clarity. The TRANSEC Management
service has an equivalent primitive. A DS-102 fill requires more human intervention than either
a DS-101 or RS-232 type fill. The Fill Port User service includes the additional primitives to
support this type of fill.

 3-7

 JTRS-5000SEC
Security API Service Definition

rev. 3.0

 : PortUser : (Port) Key : (Manager)

1. FILL_PORT_CONFIGURE

4. FILL_PORT_LOAD

1.1. FILL_PORT_SIGNAL_CONNECT

2. User Connects Device

6. User Disconnects Device

3. FILL_PORT_ENABLE

3.1. FILL_PORT_SIGNAL_LOAD

4.1. FILL_PORT_SIGNAL_ASSIGN_ID

5. KEY_STORE

7. FILL_PORT_DISABLE

Figure 3-5. Sequence Diagram: DS-102 Fill using Port and Port User Services

1. The Port User invokes the FILL_PORT_CONFIGURE primitive which configures
the Fill Port for DS-102.

1.1 The Fill Port invokes the FILL_PORT_SIGNAL_CONNECT primitive on the Port
User to notify the user to connect the fill device.

2. The user connects the fill device to the Fill Port.

3. The Port User enables the Fill Port by invoking the FILL_PORT_ENABLE primitive
on the Port.

3.1 The Fill Port invokes the FILL_PORT_SIGNAL_LOAD primitive on the Fill Port
User to notify the user to begin the loading from the fill device.

4. The Fill Port User invokes the FILL_PORT_LOAD primitive to start the load through
the fill port.

 3-8

 JTRS-5000SEC
Security API Service Definition

rev. 3.0
4.1 The Fill Port invokes the FILL_PORT_ASSIGN_ID primitive on the Fill Port User to

notify him to assign an ID to the fill element, in this case a key.

5. The Fill Port User invokes the STORE_KEY primitive on the Key Management
Service with the name ID the user has assigned.

6. The user disconnects the fill device from the Fill Port.

7. The Port User invokes the FILL_PORT_DISABLE primitive on the Fill Port.

3.3.2 Bus Service.
The Bus Service allows the Service User to fill the radio from a file resident on an SCA
compliant file system. illustrates the user of the bus service invoking the
FILL_BUS_LOAD primitive to accomplish the fill. The file name and its location are input as
part of the primitive.

Figure 3-6Figure 3-6

Bus Service
User

 : Bus

1. FILL_BUS_LOAD

Figure 3-6. Sequence Diagram: Filling the Radio from a File using the Bus Service

3.3.3 Management Service.
The Fill Management Service is not implemented directly. This service provides a set of
primitives that are common across a set of management services. The Fill Management Service
is inherited, specialized and extended by other services. It is in these other services where the
implementation will reside.

Figure 3-7Figure 3-7 illustrates a Service User invoking the FILL_ZEROIZE primitive of the
Fill Management Service. The FILL_ZEROIZE primitive zeroizes a single element of fill
information. The type of fill information depends on the inheriting service.

 3-9

 JTRS-5000SEC
Security API Service Definition

rev. 3.0

Fill Management
Service User

 : (Manager)

1. FILL_ZEROIZE

Figure 3-7. Sequence Diagram: Zeroizing an Element using the Management Service

Figure 3-8Figure 3-8 illustrates a Service User invoking the FILL_ZEROIZE_ALL primitive of
the Fill Management Service. The FILL_ZEROIZE_ALL primitive zeroizes all elements of fill
information with in a service. The type of fill information depends on the inheriting service.

Fill Management
Service User

 : (Manager)

1. FILL_ZEROIZE_ALL

Figure 3-8. Sequence Diagram: Zeroizing all Elements using the Management Service

Figure 3-9Figure 3-9 illustrates a Service User invoking the FILL_GET_IDS primitive of the Fill
Management Service. The FILL_GET_IDS primitive gets the identifiers of all the elements of
fill information with in a service. The type of fill information depends on the inheriting service.

 3-10

 JTRS-5000SEC
Security API Service Definition

rev. 3.0

Fill Management
Service User

 : (Manager)

1. FILL_GET_IDS

Figure 3-9. Sequence Diagram: Getting the Identifiers of all Elements using the

Management Service

Figure 3-10Figure 3-10 illustrates a Service User invoking the FILL_EXPIRY primitive of the
Fill Management Service. The FILL_EXPIRY primitive gets the date and time of expiration for
a single element and returns them to the Service User.

Fill Management Service
User

 : (Manager)

1. FILL_EXPIRY

Figure 3-10. Sequence Diagram: Getting Expiration Info using the Fill Management

Service

3.4 ALGORITHM.
Algorithms encompass both encryption and classified TRANSEC algorithms. Algorithms require
only one service, a management service. The Crypto Control Service and TRANSEC Control
Service instantiate traffic and key stream generation channels with the algorithms managed by
the algorithm management service. The logical separation of the service that manages
algorithms and the services that use algorithms imposes no such separation in the
implementation.

3.4.1 Management Service
The Algorithm Management Service is a specialization of the Fill Management Service with no
additional primitives. The ALG_ZEROIZE, ALG_ZEROIZE_ALL, ALG_GET_IDS and
ALG_EXPIRY primitives have the same behavior as the corresponding FILL_ZEROIZE,
FILL_ZEROIZE_ALL, FILL_GET_IDS and FILL_EXPIRY primitives where the elements are
algorithms.

 3-11

 JTRS-5000SEC
Security API Service Definition

rev. 3.0
3.5 CERTIFICATE.
The Integrity and Authentication Service uses certificates for generating and verifying Digital
Signatures. In addition they may be used for key exchanges such as Firefly. Certificates require
only one service, a management service.

3.5.1 Management Service.
The Certificate Management Service is a specialization of the Fill Management Service with one
additional primitive. The CERT_ZEROIZE, CERT_ZEROIZE_ALL, CERT_GET_IDS and
CERT_EXPIRY primitives have the same behavior as the corresponding FILL_ZEROIZE,
FILL_ZEROIZE_ALL, FILL_GET_IDS and FILL_EXPIRY primitives where the elements are
certificates.

3.6 CRYPTO.
Cryptographic (COMSEC) functionality is encompassed in the Crypto Control and
Encrypt/Decrypt services.

3.6.1 Control Service.
The Crypto Control Service covers channel creation, destruction, starting, stopping, resetting and
registration for crypto alarm notification.

Figure 3-11Figure 3-11 illustrates a Service User invoking the CRYPT_CREATE_CHAN
primitive of the Crypto Control Service. The CRYPT_CREATE_CHAN causes the Crypto
Control Service to allocate internal resources and create a crypto channel. The channel type,
algorithm, key(s), mode(s) and properties (e.g. straps) are specified as part of the primitive. In
addition a certificate may be specified for establishment of a security association such as in a
Firefly exchange. The CRYPT_CREATE_CHAN primitive returns an opaque channel identifier
to the Service User.

Crypto Control
Service User

 : Controller

1. CRYPT_CREATE_CHAN

Figure 3-11. Sequence Diagram: Creating a Channel using the Crypto Control Service

Figure 3-12Figure 3-12 illustrates a Service User invoking the CRYPT_DESTROY_CHAN
primitive of the Crypto Control Service. The CRYPT_DESTROY_CHAN primitive destroys a
channel created by the CRYPT_CREATE_CHAN primitive and all cryptographic resources
allocated to the channel are released.

 3-12

 JTRS-5000SEC
Security API Service Definition

rev. 3.0

Crypto Control
Service User

 : Controller

1. CRYPT_DESTROY_CHAN

Figure 3-12. Sequence Diagram: Destroying a Channel using the Crypto Control Service

Figure 3-13Figure 3-13 illustrates a Service User invoking the CRYPT_GET_CHAN_CONFIG
primitive of the Crypto Control Service. The CRYPT_GET_CHAN_CONFIG primitive returns
the configuration information used to create a channel with the CRYPT_GET_CHAN_CONFIG
primitive.

Crypto Control
Service User

 : Controller

1. CRYPT_GET_CHAN_CONFIG

Figure 3-13. Sequence Diagram: Getting the Configuration of a Crypto Channel using the

Crypto Control Service

Figure 3-14Figure 3-14 illustrates a Service User invoking the CRYPT_START_CHAN
primitive of the Crypto Control Service. The CRYPT_ START_CHAN primitive is used to start
a crypto channel or an individual mode of a crypto channel such as a Firefly exchange.

 3-13

 JTRS-5000SEC
Security API Service Definition

rev. 3.0

Crypto Control
Service User

 : Controller

1. CRYPT_START_CHAN

Figure 3-14. Sequence Diagram: Starting a Crypto Channel using the Crypto Control

Service.

Figure 3-15Figure 3-15 illustrates a Service User invoking the CRYPT_STOP_CHAN primitive
of the Crypto Control Service. The CRYPT_ STOP_CHAN primitive is used to stop a crypto
channel or an individual mode of a crypto channel such as a Firefly exchange.

Crypto Control
Service User

 : Controller

1. CRYPT_STOP_CHAN

Figure 3-15. Sequence Diagram: Stopping a Crypto Channel using the Crypto Control

Service

Figure 3-16Figure 3-16 illustrates a Service User invoking the CRYPT_RESET_CHAN
primitive of the Crypto Control Service. The CRYPT_ RESET _CHAN primitive is used to
reset a crypto channel.

 3-14

 JTRS-5000SEC
Security API Service Definition

rev. 3.0

Crypto Control
Service User

 : Controller

1. CRYPT_RESET_CHAN

Figure 3-16. Sequence Diagram: Resetting a Crypto Channel using the Crypto Control

Service

Figure 3-17Figure 3-17 illustrates a Service User invoking the CRYPT_RESET primitive of the
Crypto Control Service. The CRYPT_RESET primitive is used to reset an entire cryptographic
subsystem.

Crypto Control
Service User

 : Controller

1. CRYPT_RESET

Figure 3-17. Sequence Diagram: Resetting the Cryptographic Subsystem using the Crypto

Control Service

3.6.2 Encrypt/Decrypt Service.
The Encrypt/Decrypt services provide for encryption and decryption of data using a given
channel created by the Crypto Control Service. The Encrypt/Decrypt primitives can be
categorized in . Table 3-2Table 3-2

 3-15

 JTRS-5000SEC
Security API Service Definition

rev. 3.0

Table 3-2. Encrypt/Decrypt Primitive Cross-reference Table

SERVICE IMPLEMENTATION TYPE

CHANNEL
TYPE

MULTIPLE CHANNELS PER
OBJECT

SINGLE CHANNEL PER
OBJECT

Single Sided

(Red-Red,

Black-Black)

CRYPT_ENCRYPT_WITH_ID,
CRYPT_DECRYPT _WITH_ID

CRYPT_ENCRYPT,
CRYPT_DECRYPT

Two Sided

(Red-Black,

Black-Red)

CRYPT_TRANSFORM_WITH_ID CRYPT_TRANSFROM

The column labels denote the implementation type of the Encrypt/Decrypt Service. Multiple
Channels per Object indicates an interface where multiple clients connect to the same server and
are multiplexed by channel identifier. Single Channel per Object indicates that each channel has
a single client connected to a single server and the channel identifier is implicit. The row labels
denote the type of channel created. A single sided channel provides encrypt/decrypt services that
return the results back to the Service User (e.g. black side DAMA order wire). For a two-sided
channel, the result of the encrypt/decrypt is pushed out of the opposite side of the crypto
boundary (e.g. normal data traffic). The Encrypt/Decrypt service provides service primitives to
support these types of implementations and channels.

Figure 3-18Figure 3-18 illustrates a Service User invoking the CRYPT_ENCRYPT primitive of
the Encrypt/Decrypt Service. The CRYPT_ENCRYPT primitive is used to encrypt data and
return the data to the Service User. The channel identifier is not passed in the primitive, as it is
implicit in the instantiation of the service.

Encrypt Decrypt
Service User

 :
SingleChannelSingleSided

1. CRYPT_ENCRYPT

Figure 3-18. Sequence Diagram: Same Side Encryption using the Encrypt/Decrypt Service

Figure 3-19Figure 3-19 illustrates a Service User invoking the CRYPT_DECRYPT primitive of
the Encrypt/Decrypt Service. The CRYPT_DECRYPT primitive is used to encrypt data and

 3-16

 JTRS-5000SEC
Security API Service Definition

rev. 3.0
return the data to the Service User. The channel identifier is not passed in the primitive, as it is
implicit in the instantiation of the service.

Encrypt Decrypt
Service User

 :
SingleChannelSingleSided

1. CRYPT_DECRYPT

Figure 3-19. Sequence Diagram: Same Side Decryption using the Encrypt Decrypt Service

Figure 3-20Figure 3-20 illustrates a Service User invoking the CRYPT_ENCRYPT_WITH_ID
primitive of the Encrypt/Decrypt Service. The CRYPT_ENCRYPT_WITH_ID primitive is used
to encrypt data and return the data to the Service User. The channel identifier is passed in the
primitive.

Encrypt Decrypt
Service User

 : MultiChannelSingleSided

1. CRYPT_ENCRYPT_WITH_ID

Figure 3-20. Same Side Encryption with Channel Identifier using the Encrypt/Decrypt

Service

Figure 3-21Figure 3-21 illustrates a Service User invoking the CRYPT_DECRYPT_WITH_ID
primitive of the Encrypt/Decrypt Service. The CRYPT_DECRYPT_WITH_ID primitive is used
to encrypt data and return the data to the Service User. The channel identifier is passed in the
primitive.

 3-17

 JTRS-5000SEC
Security API Service Definition

rev. 3.0

Encrypt Decrypt
Service User

 : MultiChannelSingleSided

1. CRYPT_DECRYPT_WITH_ID

Figure 3-21. Same Side Decryption with Channel Identifier using the Encrypt/Decrypt

Service

Figure 3-22Figure 3-22 illustrates a Service User invoking the CRYPT_TRANSFORM primitive
of the Encrypt/Decrypt Service. The CRYPT_TRANSFORM primitive is used to
encrypt/decrypt data. The results of the encryption/decryption appear on the opposite side of the
red/black boundary. Header information to bypass the encryption/decryption is provided in the
primitive along with the data. The content and size of the header is waveform specific. A
corresponding Bypass Policy for the waveform will describe what in the header can be bypassed.
The channel identifier is not passed in the primitive, as it is implicit in the instantiation of the
service.

Encrypt Decrypt
Service User

 : SingleChannel

1. CRYPT_TRANSFORM

Figure 3-22. Sequence Diagram: Encryption/Decryption using the Encrypt/ Decrypt

Service

Figure 3-23Figure 3-23 illustrates a Service User invoking the
CRYPT_TRANSFORM_WITH_ID primitive of the Encrypt/Decrypt Service. The
CRYPT_TRANSFORM_WITH_ID primitive is used to encrypt/decrypt data. This is a multi-
channel service. Multiple channels are multiplexed via the channel identifier created by the
CRYPT_CREATE_CHAN primitive. This service allows one component to handle multiple
instantiated waveform channels. The results of the encryption/decryption appear on the opposite
side of the red/black boundary. Header information to bypass the encryption/decryption is
provided in the primitive along with the data. The content and size of the header is waveform
specific. A corresponding Bypass Policy for the waveform will describe what in the header can
be bypassed. The channel identifier is passed in the primitive.

 3-18

 JTRS-5000SEC
Security API Service Definition

rev. 3.0

Encrypt Decrypt
Service User

 : MultiChannel

1. CRYPT_TRANSFORM_WITH_ID

Figure 3-23. Sequence Diagram: Encryption/Decryption with Channel Identifier using the

Encrypt/Decrypt Service

3.7 KEY.
Keys require only one service, a management service. Keys in this context are persistent keys,
which require storage and are not to be confused with session keys that are generated in a Firefly
exchange for example. The Crypto Control Service instantiates traffic channels with the keys
managed by the key management service. The logical separation of the service that manages
keys and the services that use keys imposes no such separation in the implementation.

3.7.1 Management Service.
The Key Management Service is a specialization of the Fill Management Service with three
additional primitives. The KEY_ZEROIZE, KEY_ZEROIZE_ALL, KEY_GET_IDS and
KEY_EXPIRY primitives have the same behavior as the corresponding FILL_ZEROIZE,
FILL_ZEROIZE_ALL, FILL_GET_IDS and FILL_EXPIRY primitives where the elements are
keys.

Figure 3-24Figure 3-24 illustrates a Service User invoking the KEY_STORE primitive of the
Key Management Service. The KEY_STORE primitive instructs the Key Management service
provider to store the current fill information as a Key with the name provided in the primitive.
Refer to , which illustrates a complete DS-102 fill sequence using Security
Service Primitives.

Figure 3-5Figure 3-5

 3-19

 JTRS-5000SEC
Security API Service Definition

rev. 3.0

Key Management
Service User

 : (Manager)

1. KEY_STORE

Figure 3-24. Sequence Diagram: Storing a DS-102 Key using the Key Management
Service.

Figure 3-25Figure 3-25 illustrates a Service User invoking the KEY_UPDATE primitive of the
Key Management Service. The KEY_UPDATE primitive instructs the Key Management
Service provider to update a specific key that is identified as part of the primitive. The result is a
key stored under the same identifier but with an update count incremented by one. Functionally
the key is a new key.

Key Management
Service User

 : (Manager)

1. KEY_UPDATE

Figure 3-25. Sequence Diagram: Updating a Key using the Key Management Service

Figure 3-26Figure 3-26 illustrates a Service User invoking the KEY_GET_UPDATE_COUNT
primitive of the Key Management Service. The KEY_GET_UPDATE_COUNT primitive
instructs the Key Management Service provider to retrieve the update count of a specific key that
is identified as part of the primitive. The count is returned to the user as part of the primitive.
The update count is used when coordinating communications between peers to ensure that the
key the peers intend to use has the same update count in each radio.

 3-20

 JTRS-5000SEC
Security API Service Definition

rev. 3.0

Key Management
Service User

 : (Manager)

1. KEY_GET_UPDATE_COUNT

Figure 3-26. Sequence Diagram: Getting the Update Count of a Key using the Key

Management Service

3.8 TRANSEC.
TRANSEC requires three services, a management service for managing stored TRANSEC
information, a control service for creating and destroying key stream generation channels and a
key stream provider service for providing the actual key stream. TRANSEC in this context is
persistent information used to generate TRANSEC cover. The Key Stream provider service
provides the actual key stream data to a waveform. The logical separation of the TRANSEC
management service that manages TRANSEC information and the services that use TRANSEC
information imposes no such separation in the implementation.

3.8.1 Control Service.
The TRANSEC Control Service instantiates and destroys classified key stream generation
channels with the TRANSEC information managed by the TRANSEC management service.

Figure 3-27Figure 3-27 illustrates a Service User invoking the TRAN_CREATE_CHAN
primitive of the TRANSEC Control Service. The TRAN_CREATE_CHAN primitive causes the
Control Service to create a classified key stream generation channel. The TRANSEC algorithm,
key and seed are specified as part of the primitive. An opaque channel identifier is returned to
the Service User.

 3-21

 JTRS-5000SEC
Security API Service Definition

rev. 3.0

Transec Control
Service User

 : (Controller)

1. TRAN_CREATE_CHAN

Figure 3-27. Sequence Diagram: Creating a TRANSEC Channel (Key Stream) using the
TRANSEC Control Service

Figure 3-28Figure 3-28 illustrates a Service User invoking the TRAN_GET_CHAN_CONFIG
primitive of the TRANSEC Control Service. The TRAN_GET_CHAN_CONFIG primitive
causes the Control Service to return the configuration of a key stream generation channel. The
TRANSEC channel identifier is input as part of the primitive. The configuration information
that was used to create the channel is returned to the Service User.

Transec Control
Service User

 : (Controller)

1. TRAN_GET_CHAN_CONFIG

Figure 3-28. Sequence Diagram: Getting a TRANSEC Channel Configuration using the

TRANSEC Control Service

Figure 3-29Figure 3-29 illustrates a Service User invoking the TRAN_DESTROY_CHAN
primitive of the TRANSEC Control Service. The TRAN_DESTROY_CHAN primitive causes
the Control Service to destroy a key stream generation channel. The TRANSEC channel
identifier is input as part of the primitive.

 3-22

 JTRS-5000SEC
Security API Service Definition

rev. 3.0

Transec Control
Service User

 : (Controller)

1. TRAN_DESTROY_CHAN

Figure 3-29. Sequence Diagram: Destroying a TRANSEC Channel using the TRANSEC

Control Service

3.8.2 Key Stream Service.
The Key Stream Service provides generated classified key stream data from a channel
instantiated by the TRANSEC Control Service.

Figure 3-30Figure 3-30 illustrates a Service User invoking the TRAN_GEN_KEY_STREAM
primitive of the TRANSEC Key Stream Service. The TRAN_GEN_KEY_STREAM generates a
classified key stream based on the algorithm and key provided to the TRAN_CREATE_CHAN
primitive. A new seed is provided as input to this primitive. The resulting key stream is returned
to the Service User as part of the primitive. The channel identifier is input as part of the
primitive (multi-channel service).

Transec Provider
Service User

 : (Provider)

1. TRAN_GEN_KEY_STREAM

Figure 3-30. Sequence Diagram: Generating a Key Stream with a New Seed using the
TRANSEC Key Stream Service.

Figure 3-31Figure 3-31 illustrates a Service User invoking the
TRAN_GEN_NEXT_KEY_STREAM primitive of the TRANSEC Key Stream Service. The
TRAN_GEN_KEY_STREAM is identical to the TRAN_GEN_KEY_STREAM primitive except
that a new seed is not provided and the key stream is generated based on the existing state of the
channel.

 3-23

 JTRS-5000SEC
Security API Service Definition

rev. 3.0

Transec Provider
Service User

 : (Provider)

1. TRAN_GEN_NEXT_KEY_STREAM

Figure 3-31. Sequence Diagram: Generating a Key Stream without a New Seed using the

TRANSEC Key Stream Service.

3.8.3 Management Service.
The TRANSEC Management Service is a specialization of the Fill Management Service with
two additional primitives. The TRAN_ZEROIZE, TRAN _ZEROIZE_ALL, TRAN _GET_IDS
and TRAN_EXPIRY primitives have the same behavior as the corresponding FILL_ZEROIZE,
FILL_ZEROIZE_ALL, FILL_GET_IDS and FILL_EXPIRY primitives where the elements are
TRANSEC information.

Figure 3-32Figure 3-32 illustrates a Service User invoking the TRAN_STORE primitive of the
TRANSEC Management Service. The TRAN_STORE primitive instructs the TRANSEC
management service provider to store the current fill information as TRANSEC information with
the name provided in the primitive.

Transec Management
Service User

 : (Manager)

1. TRAN_STORE

Figure 3-32. Sequence Diagram: Storing DS-102 TRANSEC Information using the
TRANSEC Management Service

Figure 3-33Figure 3-33 illustrates a Service User invoking the TRAN_GET_FILL primitive of
the TRANSEC Management Service. The TRAN_GET_FILL primitive instructs the TRANSEC
Management service provider to return the unclassified fill information associated with the
identifier provided in the primitive to the service user. Refer to , which
illustrates a complete DS-102 fill sequence using Security Service Primitives.

Figure 3-5Figure 3-5

 3-24

 JTRS-5000SEC
Security API Service Definition

rev. 3.0

Transec Management
Service User

 : (Manager)

1. TRAN_GET_FILL

Figure 3-33. Sequence Diagram: Getting Unclassified TRANSEC Fill Info using the

TRANSEC Management Service

3.9 POLICY.
Policies in the context of the JTRS Security Service API are information used to control the
behavior of the JTRS Security Enforcement mechanisms. The number and content of the
policies in any given JTRS platform will vary according to the platform configuration and the
number and type of waveform applications loaded on it. Policies are used to parameterize crypto
bypass behavior, access control to objects and files, and audit behavior.
illustrates how bypass policies are used. The Control Bypass Guard enforces System and
Waveform configuration and control bypass policies that are accessed from a Policy store. The
Bypass policies contain information that the guard uses in its enforcement mechanism to either
allow or disallow information to flow from red to black. The Header Bypass Guard is similar
except that it performs its enforcement function at real time data rates and on header information
that is associated with packets of data.

Figure 3-34Figure 3-34

 3-25

 JTRS-5000SEC
Security API Service Definition

rev. 3.0

Control
Bypass
Guard

Crypto
Device

Policy
Store REDBLACK

CRYPTOGRAPHIC
SUBSYSTEM

Header
Bypass
Guard

Waveform
Header and

DataWaveform
Header

System
Control

System
Control

Waveform
Data

Waveform
Header and

Encrypted Data

Figure 3-34. Security Policies and Bypass

3.9.1 Management Service.
The Policy Management Service is a specialization of the Fill Management Service with one
additional primitive. The POL_ZEROIZE, POL_ZEROIZE_ALL, POL_GET_IDS and
POL_EXPIRY primitives have the same behavior as the corresponding FILL_ZEROIZE,
FILL_ZEROIZE_ALL, FILL_GET_IDS and FILL_EXPIRY primitives where the elements are
policies.

Figure 3-35Figure 3-35 illustrates a Service User invoking the POL_GET_POLICY primitive of
the Policy Management Service. The POL_GET_POLICY primitive instructs the Policy
Management Service provider to return the security policy associated with the identifier provided
in the primitive to the service user. The Policy Management Service provider returns the policy
in the same primitive.

 3-26

 JTRS-5000SEC
Security API Service Definition

rev. 3.0

Policy Management
Service User

 : (Manager)

1. POL_GET_POLICY

Figure 3-35. Sequence Diagram: Getting a Security Policy using the Policy Management
Service.

3.10 INTEGRITY AND AUTHENTICATION.
Integrity and Authentication encompasses verification of the identity of the source of information
(authentication) and verification that the information has not been changed (integrity).
Certificates are used to generate the Integrity and Authentication context.

3.10.1 Control and Digital Signatures Provider Services.
Figure 3-36Figure 3-36 illustrates the sequence of primitives to digitally sign a file.

Security Service
User

 : Controller : (Provider)

1. IA_CREATE_CONTEXT

2. IA_SIGN_FILE

3. IA_DESTROY_CONTEXT

Figure 3-36. Sequence Diagram: Signing a File

1. The Service User invokes the IA_CREATE_CONTEXT primitive of the Control
Service. The identifier of the certificate to use to create the context is supplied as part
of the primitive. The certificate identifies the hashing and signature algorithms to be
used.

2. The Service User invokes the IA_SIGN_FILE primitive of the Digital Signatures
Provider Service to sign a file.

 3-27

 JTRS-5000SEC
Security API Service Definition

rev. 3.0
3. The Service User invokes the IA_DESTROY_CONTEXT context primitive of the

Digital Signatures Provider Service to destroy the context.

Figure 3-37Figure 3-37 illustrates the sequence of primitives to digitally verify a file.

Security Service
User

 : Controller : (Provider)

1. IA_CREATE_CONTEXT

3. IA_DESTROY_CONTEXT

2. IA_VERIFY_FILE

Figure 3-37. Sequence Diagram: Verifying a File

1. The Service User invokes the IA_CREATE_CONTEXT primitive of the Control
Service. The identifier of the certificate to use to create the context is supplied as part
of the primitive.

2. The Service User invokes the IA_VERIFY_FILE primitive of the Digital Signatures
Provider Service to verify a digitally signed file. The result of the verification is
returned in the primitive.

3. The Service User invokes the IA_DESTROY_CONTEXT context primitive of the
Digital Signatures Provider Service to destroy the context.

Figure 3-38Figure 3-38 illustrates the sequence of primitives to generate and sign a hash.

 3-28

 JTRS-5000SEC
Security API Service Definition

rev. 3.0

Security Service
User

 : Controller : (Provider)

1. IA_CREATE_CONTEXT

4. IA_DESTROY_CONTEXT

2. IA_HASH

3. IA_SIGN_HASH

Figure 3-38. Sequence Diagram: Generating and Signing a Hash.

1. The Service User invokes the IA_CREATE_CONTEXT primitive of the Control
Service. The identifier of the certificate to use to create the context is supplied as part
of the primitive. An internal hash is initialized as part of the context.

2. The Service User invokes the IA_HASH primitive of the Digital Signatures Provider
Service to update the internal hash from data supplied with the primitive. This
primitive may executed as many times in succession as required to generate the
required hash (e.g. a block of data must be broken up into 2 or more pieces for
reasons of time or size). Once IA_HASH is invoked for a context it is invalid to
invoke the IA_SIGN_FILE or IA_VERIFY_FILE primitives, as they would
invalidate the hash.

3. The Service User invokes the IA_SIGN_HASH primitive to sign the generated hash.
The resultant digital signature is returned in the primitive.

4. The Service User invokes the IA_DESTROY_CONTEXT context primitive of the
Digital Signatures Provider Service to destroy the context.

Figure 3-38Figure 3-38 illustrates the sequence of primitives to verify a digitally signed block of
data.

 3-29

 JTRS-5000SEC
Security API Service Definition

rev. 3.0

Security Service
User

 : Controller : Provider

1. IA_CREATE_CONTEXT

4. IA_DESTROY_CONTEXT

2. IA_HASH

3. IA_VERIFY_HASH

Figure 3-39. Sequence Diagram: Verifying a Digital Signature

1. The Service User invokes the IA_CREATE_CONTEXT primitive of the Control
Service. The identifier of the certificate to use to create the context is supplied as part
of the primitive. An internal hash is initialized as part of the context.

2. The Service User invokes the IA_HASH primitive of the Digital Signatures Provider
Service to update the internal hash from data supplied with the primitive. This
primitive may executed as many times in succession as required to generate the
required hash. Once IA_HASH is invoked for a context it is invalid to invoke the
IA_SIGN_FILE or IA_VERIFY_FILE primitives, as they will invalidate the hash.

3. The Service User invokes the IA_VERIFY_HASH primitive to verify the digital
signature supplied with the data matches the generated hash. The resultant digital
signature is returned in the primitive.

4. The Service User invokes the IA_DESTROY_CONTEXT context primitive of the
Digital Signatures Provider Service to destroy the context.

3.11 ALARM.
The Security Service divides alarms into two components, an audit record and an alarm
indicator. The audit record is modeled after the ITU X.736 standard. The CosLwLog
LogProducer Interface is used to log the audit record.

Figure 3-40Figure 3-40 illustrates a Security Service Provider issuing the ALARM_SIGNAL
primitive. This primitive signals the Security Service User that a crypto alarm has occurred.

 3-30

 JTRS-5000SEC
Security API Service Definition

rev. 3.0
3.11.1 User.
Figure 3-40Figure 3-40 illustrates a Security Service Provider issuing the ALARM_SIGNAL
primitive. This primitive signals the Security Service User that a crypto alarm has occurred.

 : User Security Service
Provider

1. ALARM_SIGNAL

Figure 3-40. Sequence Diagram: Signaling a Crypto Alarm

3.12 TIME.
Some Security Service implementations require management of time. The Security Service API
defines a Time Management Service for this purpose.

3.12.1 Management Service.
Figure 3-41Figure 3-41 illustrates a Service User invoking the TIME_SET_TIME primitive of
the Time Management Service. TIME_SET_TIME primitive is used to set the time of day in for
the Security Service.

Time Management
Service User

 : (Manager)

1. TIME_SET_TIME

Figure 3-41. Sequence Diagram: Setting Time using the Time Management Service

Figure 3-42Figure 3-42 illustrates a Service User invoking the TIME_GET_TIME primitive of
the Time Management Service. TIME_GET_TIME primitive is used to request the time of day
maintained within the Security Service. The time of day is returned in the primitive.

 3-31

 JTRS-5000SEC
Security API Service Definition

rev. 3.0

Time Management
Service User

 : (Manager)

1. TIME_GET_TIME

Figure 3-42. Sequence Diagram: Getting Time using the Time Management Service

Figure 3-43Figure 3-43 illustrates a Service User invoking the TIME_SET_DATE primitive of
the Time Management Service. TIME_SET_DATE primitive is used to set the date in the
Security Service.

Time Management

Service User
 : (Manager)

1. TIME_SET_DATE

Figure 3-43. Sequence Diagram: Setting Date using the Time Management Service

Figure 3-43Figure 3-43 illustrates a Service User invoking the TIME_GET_DATE primitive of
the Time Management Service. TIME_GET_DATE primitive is used to get the date maintained
in the Security Service.

 3-32

 JTRS-5000SEC
Security API Service Definition

rev. 3.0

Time Management
Service User

 : (Manager)

1. TIME_GET_DATE

Figure 3-44. Sequence Diagram: Getting Date using the Time Management Service

3.13 GPS.

3.13.1 Management.
The GPS Management Service is a specialization of the TRANSEC Management Service with
no additional primitives. The GPS_ZEROIZE, GPS_ZEROIZE_ALL, GPS_GET_IDS,
GPS_EXPIRY, GPS_STORE and GPS_GET_FILL primitives have the same behavior as the
corresponding TRAN_ZEROIZE, TRAN_ZEROIZE_ALL, TRAN_GET_IDS TRAN_EXPIRY,
TRAN_STORE and TRAN_GET_FILL primitives.

 3-33

 JTRS-5000SEC
Security API Service Definition

rev. 3.0

4 SERVICE PRIMITIVES.
The entirety of the JTRS Security API set is defined within a CORBA module called
JTRSSecurity. There are common types that are used by multiple modules within the
JTRSSecurity module. They are shown in . Figure 4-1Figure 4-1

ChannelIDType
<<CORBATypedef>>

IDType
<<CORBATypedef>>

IDSequenceType
<<CORBATypedef>>

<<uses>>

DateType
year : YearType
day : DayType

<<CORBAStruct>>

YearType
<<CORBATypedef>>

DayType
<<CORBATypedef>>

TODType
seconds : unsigned long
nanoseconds : unsigned long

<<CORBAStruct>>

<<uses>>

<<uses>>

Figure 4-1. Class Diagram: JTRS Security Common Types

The service primitives, as shown in are broken up into service groups. Each
service group translates into a CORBA module within the JTRSSecurity module and each
service within the group translates into an interface. This organization provides scope for names.
For example the full scoped name of the Key Management Service is
JTRSSecurity::Key::Manager.

Table 3-1Table 3-1

 4-1

 JTRS-5000SEC
Security API Service Definition

rev. 3.0

4.1 SECURITY.
There is a management service that exists at the JTRSSecurity level and is shown in

.
Figure

4-2Figure 4-2

Manager

zeroizeAll() : void

<<Interface>>

Figure 4-2. Class Diagram: JTRS Security Management Service

4.1.1 ZEROIZE_ALL.

The FILL_ZEROIZE_ALL primitive deletes all managed elements within the entirety of the
Security Service. These elements are algorithms, keys, TRANSEC certificates, Policies and
GPS.

4.1.1.1 Synopsis.
void zeroizeAll () raises (ZeroizeFailed);

4.1.1.2 Parameters.
N/A.

4.1.1.3 State.
This primitive is valid in any state.

4.1.1.4 New State.
The resulting state is unchanged.

4.1.1.5 Response.
N/A.

4.1.1.6 Originator.
This primitive is initiated by the service user.

4.1.1.7 Errors/Exceptions.
ZeroizeFailed

 The zeroize failed for an indeterminate reason.

 4-2

 JTRS-5000SEC
Security API Service Definition

rev. 3.0

4.2 FILL.
The Fill services are shown in . These services support filling a
cryptographic subsystem through a Fill Port (Port, PortUser), filling through file input (Bus) and
management of store fill information (Manager).

Figure 4-3Figure 4-3

Port

configure(type : in PortType) : void
enable() : void
disable() : void
load() : LoadResultType

<<Interface>>
PortUser

signalConnectDevice(instruction : in string) : void
signalLoad(instruction : in string) : void
signalAssignID(instruction : in string) : void

<<Interface>>

IDType
(from JTRSSecurity)

<<CORBATypedef>>

PortType
PT_DS101
PT_DS102
PT_RS232

<<CORBAEnum>>

<<uses>>
<<uses>>

Manager

zeroize(ID : in IDType, override : in boolean) : void
zeroizeAll() : void
getIDs(IDs : out IDSequenceType) : void
expiry(ID : in IDType, date : out DateType, time : out TODType) : boolean

<<Interface>>

<<uses>>

IDSequenceType
(from JTRSSecurity)

<<CORBATypedef>>

<<uses>>

Bus

load(fileSys : in CF::FileSystem, fileName : in string) : void

<<Interface>>

FileSystem
(from CF)

<<Interface>>

<<uses>>

LoadResultType
LR_COMPLETED
LR_DEVICE_ERROR
LR_CORRUPTED_LOAD

<<CORBAEnum>>

<<uses>>

Figure 4-3. Class Diagram: Fill Services

 4-3

 JTRS-5000SEC
Security API Service Definition

rev. 3.0

4.2.1 FILL_PORT_CONFIGURE.
This primitive configures the Fill Port for DS-101, DS-102 or RS-232 operation.

4.2.1.1 Synopsis.
void configure (

in PortType type
);

4.2.1.2 Parameters.
type

Indicates how to configure the Fill Port

PT_DS101 Configure the Fill Port for DS101 operation

PT_DS102 Configure the Fill Port DS102 operation

PT_RS232 Configure the Fill Port RS-232 operation

4.2.1.3 State.
This primitive is valid in the DISABLED state.

4.2.1.4 New State.
The state remains unchanged.

4.2.1.5 Response.
The FILL_PORT_SIGNAL_CONNECT primitive is invoked on the service user.

4.2.1.6 Originator.
This primitive is initiated by the service user.

4.2.1.7 Errors/Exceptions.
N/A.

 4-4

 JTRS-5000SEC
Security API Service Definition

rev. 3.0

4.2.2 FILL_PORT_ENABLE.
This primitive enables the Fill Port. The port will be enabled with the configuration set by the
FILL_PORT_CONFIGURE primitive.

4.2.2.1 Synopsis.
void enable ();

4.2.2.2 Parameters.
N/A.

4.2.2.3 State.
This primitive is valid in the DISABLED state.

4.2.2.4 New State.
The new state is ENABLED.

4.2.2.5 Response.
The FILL_PORT_SIGNAL_LOAD primitive is invoked on the service user.

4.2.2.6 Originator.
This primitive is initiated by the service user.

4.2.2.7 Errors/Exceptions.
N/A.

 4-5

 JTRS-5000SEC
Security API Service Definition

rev. 3.0

4.2.3 FILL_PORT_DISABLE.
This primitive disables the Fill Port.

4.2.3.1 Synopsis.
void disable ();

4.2.3.2 Parameters.
N/A.

4.2.3.3 State.
This primitive is valid in the ENABLED state.

4.2.3.4 New State.
The resulting state is DISABLED.

4.2.3.5 Response.
N/A.

4.2.3.6 Originator.
This primitive is initiated by the service user.

4.2.3.7 Errors/Exceptions.
N/A.

 4-6

 JTRS-5000SEC
Security API Service Definition

rev. 3.0

4.2.4 FILL_PORT_LOAD.
This primitive initiates the load of fill information from the fill device. The primitive returns to
the caller when the load terminates.

4.2.4.1 Synopsis.
LoadResultType load ();

4.2.4.2 Parameters.
N/A.

4.2.4.3 State.
This primitive is valid in the ENABLED state.

4.2.4.4 New State.
 If the load completes with a result of LR_DEVICE_ERROR or LR_CORRUPTED_LOAD, the
state will remain unchanged. If the load completes with a result of LR_SUCCESS and IDs were
loaded, the state will remain unchanged. If the load completes with a result of LR_SUCCESS
and IDs are needed, the state will transition to the PENDING_STORE state.

4.2.4.5 Response.
 When additional IDs are needed, the FILL_PORT_SIGNAL_ASSIGN_ID primitive is invoked
on the service user.

4.2.4.6 Originator.
This primitive is initiated by the service user.

4.2.4.7 Errors/Exceptions.
The primitive returns a status:

LR_SUCCESS The load completed successfully.

LR_DEVICE_ERROR A device error occurred. The fill device may not be connected or
may be faulty.

LR_CORRUPTED_LOAD The loaded data is corrupt.

 4-7

 JTRS-5000SEC
Security API Service Definition

rev. 3.0

4.2.5 FILL_PORT_SIGNAL_CONNECT.
This primitive signals the service user to connect the Fill Device to the Fill Port and is issued in
response to the FILL_PORT_CONFIGURE primitive.

4.2.5.1 Synopsis.
void signalConnectDevice (
 in string instruction
);

4.2.5.2 Parameters.
string

Provides any additional information to the user about connecting the device.

4.2.5.3 State.
This primitive is valid in the DISABLED state.

4.2.5.4 New State.
The state remains unchanged.

4.2.5.5 Response.
N/A.

4.2.5.6 Originator.
This primitive is initiated by the service provider.

4.2.5.7 Errors/Exceptions.
N/A.

 4-8

 JTRS-5000SEC
Security API Service Definition

rev. 3.0

4.2.6 FILL_PORT_SIGNAL_LOAD.
This primitive signals the Service User that the Fill Port is ready for the Service User to initiate
the load. This primitive is invoked in response to the FILL_PORT_ENABLE primitive.

4.2.6.1 Synopsis.
void signalLoad (
 in string instruction
);

4.2.6.2 Parameters.
instruction

A string which may contain additional instructions for initiating the load.

4.2.6.3 State.
 This primitive is valid during the transition from the ENABLED to the DISABLED state.

4.2.6.4 New State.
The state remains unchanged.

4.2.6.5 Response.
N/A.

4.2.6.6 Originator.
This primitive is initiated by the service provider.

4.2.6.7 Errors/Exceptions.
N/A.

 4-9

 JTRS-5000SEC
Security API Service Definition

rev. 3.0

4.2.7 FILL_PORT_SIGNAL_ASSIGN_ID.
This primitive signals the Service User that the appropriate Fill Manager (TRANSEC or KEY) is
ready for the Service User to assign an ID to the fill information. The primitive is issued either in
response to a successful FILL_PORT_LOAD primitive when IDs are needed or in response to
the KEY_STORE_KEY or TRAN_STORE primitives when additional IDs are needed.

4.2.7.1 Synopsis.
void signalAssignId (

in string instruction
);

4.2.7.2 Parameters.
instruction

A string that may contain additional instructions for assigning an ID to the fill
information loaded via a DS-102 fill device.

4.2.7.3 State.
 This primitive is valid in either the ENABLED or PENDING_STORE state.

4.2.7.4 New State.
 The resulting state is PENDING_STORE.

4.2.7.5 Response.
N/A.

4.2.7.6 Originator.
This primitive is initiated by the service provider.

4.2.7.7 Errors/Exceptions.
N/A.

 4-10

 JTRS-5000SEC
Security API Service Definition

rev. 3.0

4.2.8 FILL_BUS_LOAD.
This primitive loads fill information that is stored in a file. The file may or may not be encrypted
but will be digitally signed. All keys and cryptographic algorithms will be encrypted and
digitally signed.

4.2.8.1 Synopsis.
void load (
 in CF::FileSystem fileSys,
 in string fileName
);

4.2.8.2 Parameters.
fileSys

Identifies the location of the file of fill information.

fileName

The name of the file.

4.2.8.3 State.
This primitive may be issued in any state.

4.2.8.4 New State.
The state remains unchanged.

4.2.8.5 Response.
N/A.

4.2.8.6 Originator.
This primitive is initiated by the service user.

4.2.8.7 Errors/Exceptions.
This primitive may raise the exceptions associated with the CF::FileSystem and CF::File. In
addition the following exception may be raised:

FileNotValid

The file is not a valid fill file.

 4-11

 JTRS-5000SEC
Security API Service Definition

rev. 3.0

4.2.9 FILL_ZEROIZE.
This primitive deletes all instances of a single element from a security service as specified by the
ID.

4.2.9.1 Synopsis.
void zeroize (
 in IdType id
 in boolean override
) raises (InvalidId, ElementInUse, ZeroizeFailed);

4.2.9.2 Parameters.
id

Identifies the element to delete

override

Causes the element to be deleted even though the element is in use by an instantiated
channel or context. If the element is in use, then all processing using the element must be
terminated.

4.2.9.3 State.
The primitive is valid in any state.

4.2.9.4 New State.
The resulting state is unchanged.

4.2.9.5 Response.
N/A.

4.2.9.6 Originator.
This primitive is initiated by the service user.

4.2.9.7 Errors/Exceptions
The following exceptions may be raised:

InvalidId

The id is either malformed or the element does not exist.

ElementInUse

The element to be removed is currently in use by an instantiated channel or context. This
exception only is raised if the override parameter is set to FALSE.

ZeroizeFailed

 The zeroize failed for an indeterminate reason.

 4-12

 JTRS-5000SEC
Security API Service Definition

rev. 3.0

4.2.10 FILL_ZEROIZE_ALL.
The FILL_ZEROIZE_ALL primitive deletes all elements of a given type from a security service.
Any processing using the elements is terminated.

4.2.10.1 Synopsis.
void zeroizeAll () raises (ZeroizeFailed);

4.2.10.2 Parameters.
N/A.

4.2.10.3 State.
This primitive is valid in any state.

4.2.10.4 New State.
The resulting state is unchanged.

4.2.10.5 Response.
N/A.

4.2.10.6 Originator.
This primitive is initiated by the service user.

4.2.10.7 Errors/Exceptions.
ZeroizeFailed

 The zeroize failed for an indeterminate reason.

 4-13

 JTRS-5000SEC
Security API Service Definition

rev. 3.0

4.2.11 FILL_GET_IDS.
This primitive retrieves the identifiers of all the elements associated with the manager that are
resident in a security system (e.g. keys for Key::Manager)

4.2.11.1 Synopsis.
void getIds (

out IdSequenceType ids
);

4.2.11.2 Parameters.
ids

A sequence of identifiers of all the elements associated with the manager in the security
subsystem. The number of elements is implicit in the sequence.

4.2.11.3 State.
This primitive is valid in any state.

4.2.11.4 New State.
The resulting state is unchanged.

4.2.11.5 Response.
N/A.

4.2.11.6 Originator.
This primitive is initiated by the service user.

4.2.11.7 Errors/Exceptions.
N/A.

 4-14

 JTRS-5000SEC
Security API Service Definition

rev. 3.0

4.2.12 FILL_EXPIRY.
This primitive retrieves the expiration date and time for a given element associated with a
manager that is resident in a security system (e.g. Certificate for Certificate::Manager).

4.2.12.1 Synopsis.
boolean expiry (

in IdType id,
out DateType date,
out TODType time

) raises (InvalidId);

4.2.12.2 Parameters.
id

The ID of the element for which to retrieve the expiration time and date.

date

 The expiration date of the element. See paragraph 4.11.3.2 for the structure of DateType.

time

The expiration time of the element. See paragraph 4.11.1.2 for the structure of
TODType.

4.2.12.3 State.
This primitive is valid in any state.

4.2.12.4 New State.
The resulting state is unchanged.

4.2.12.5 Response.
This primitive returns a boolean:

FALSE The element does not expire.

TRUE The element expires at the time and date returned from the primitive.

4.2.12.6 Originator.
This primitive is initiated by the service user.

4.2.12.7 Errors/Exceptions.
The following exception is raised:

InvalidId

The id is either malformed or the element does not exist.

 4-15

 JTRS-5000SEC
Security API Service Definition

rev. 3.0

4.3 ALGORITHM.
The Algorithm Management Service is a specialization of the Fill Management Service as shown
in . It is responsible for management of stored COMSEC and TRANSEC
algorithms.

Figure 4-4Figure 4-4

Manager
<<Interface>>

Manager
(from Fill)

<<Interface>>

<<inherits>>

Figure 4-4. Class Diagram: Algorithm Management Service

4.3.1 ALG_ZEROIZE.
This primitive deletes all instances of a single cryptographic algorithm from a security service as
specified by the id. See paragraph 4.2.9 for the semantics and behavior.

4.3.2 ALG_ZEROIZE_ALL.
This primitive deletes cryptographic algorithms from a security service. See paragraph 4.2.10
for the semantics and behavior.

4.3.3 ALG_GET_IDS.
This primitive retrieves the identifiers of all the cryptographic algorithms resident in a security
service. See paragraph 4.2.11 for the semantics and behavior.

4.3.4 ALG_EXPIRY.
This primitive retrieves the expiration date and time for a given algorithm within a security
service. See paragraph 4.2.12 for the semantics and behavior.

 4-16

 JTRS-5000SEC
Security API Service Definition

rev. 3.0

4.4 CERTIFICATE.
The Certificate Management Service is a specialization of the Fill Management Service as shown
in . It is responsible for management of digital certificates which support
the Integrity and Authentication services.

Figure 4-4Figure 4-4

Manager
<<Interface>>

Manager
(from Fill)

<<Interface>>

<<inherits>>

Figure 4-5. Class Diagram: Certificate Management Service

4.4.1 CERT_ZEROIZE.
This primitive deletes all instances of a single certificate from a security service as specified by
the id. See paragraph 4.2.9 for the semantics and behavior.

4.4.2 CERT_ZEROIZE_ALL.
This primitive deletes all certificates from a security service. See paragraph 4.2.10 for the
semantics and behavior.

4.4.3 CERT_GET_IDS.
This primitive retrieves the identifiers of all the certificates resident in a security service. See
paragraph 4.2.11 for the semantics and behavior.

4.4.4 CERT_EXPIRY.
This primitive retrieves the expiration date and time for a given certificate within a security
service. See paragraph 4.2.12 for the semantics and behavior.

 4-17

 JTRS-5000SEC
Security API Service Definition

rev. 3.0

4.5 CRYPTO.
Figure 4-6Figure 4-6 shows the class diagram of the Crypto Control Service. This interface
supports the instantiation, tear down and basic mode control for a crypto channel.

Controller

createChannel(configInfo : in ChannelConfigType) : ChannelIDType
destroyChannel(channel : in ChannelIDType) : void
getChannelConfig(channel : in ChannelIDType, configInfo : out ChannelConfigType) : void
startChannel(channel : in ChannelIDType, mode : in string) : void
stopChannel(channel : in ChannelIDType, mode : in string) : void
resetChannel(channel : in ChannelIDType) : void
resetCrypto() : void

<<Interface>>

ChannelIDType
(from JTRSSecurity)

<<CORBATypedef>>

<<uses>>

ChannelConfigType
type : ChannelType
algorithm : IDType
keys : IDSequenceType
certificate : IDType
modes : CF::StringSequence
properties : CF::Properties

<<CORBAStruct>>

<<uses>>

ChannelType
CT_SIMPLEX_RX
CT_HALF_DUPLEX
CT_FULL_DUPLEX
CT_BLACK_SIDE
CT_RED_SIDE

<<CORBAEnum>>

<<uses>>

Figure 4-6. Class Diagram: Crypto Control Service

Figure 4-7Figure 4-7 shows the Encrypt/Decrypt services. These services provide the ability to
encrypt and decrypt between the red and black sides of a radio. In addition red-red and black-
black encrypt/decrypt services are provided to support cases such as DAMA order wire.

 4-18

 JTRS-5000SEC
Security API Service Definition

rev. 3.0

MultiChannelSingleSided

Encrypt(channel : in ChannelIDType, data : inout CF::OctetSequence) : void
Decrypt(channel : in ChannelIDType, data : inout CF::OctetSequence) : void

<<Interface>>

SingleChannelSingleSided

Encrypt(data : inout CF::OctetSequence) : void
Decrypt(data : inout CF::OctetSequence) : void

<<Interface>>

SingleChannel

transform(bypass : in any, payload : in CF::OctetSequence) : void

<<Interface>>

MultiChannel

transform(channel : in ChannelIDType, bypass : in any, payload : in CF::OctetSequence) : void

<<Interface>>

ChannelIDType
(from JTRSSecurity)

<<CORBATypedef>>

ChannelInAlarm
<<CORBAException>>

DeviceError
<<CORBAException>>

UnknownError
<<CORBAException>>

ChannelInAlarm
<<CORBAException>>

DeviceError
<<CORBAException>>

InvalidChannelID
<<CORBAException>>

UnknownError
<<CORBAException>>

<<uses>> <<uses>> <<uses>> <<uses>>

<<uses>> <<uses>> <<uses>>

<<uses>>

<<uses>>

Figure 4-7. Class Diagram: Encrypt/Decrypt Services

 4-19

 JTRS-5000SEC
Security API Service Definition

rev. 3.0

4.5.1 CRYPT_CREATE_CHAN.
This primitive creates a COMSEC channel within a cryptographic subsystem.

4.5.1.1 Synopsis.
ChannelIdType createChannel (

in ChannelConfigType configInfo
) raises (AssuranceLevel, CertificateNotRequired, ChanTypeAlgorithmMismatch, DeviceError,
InvalidAlgorithmId, InvalidCertificateId, InvalidKeyId, InvalidMode, InvalidPolicyId,
InvalidProperty, KeyAlgorithmMismatch, KeyExpired, NotCOMSECAlgorithm,
ResourcesUnavailable, UnknownError);

4.5.1.2 Parameters.
configInfo

The channelConfigType has the following structure:

struct ChannelConfigType {
ChannelType type;
IdType algorithm;
IdSequenceType keys;
IdType bypassPolicy;
IdType certificate;
CF::StringSequence modes;
CF::Properties properties;

};

type

Identifies the type of crypto channel to create:

CT_SIMPLEX_RX,

Receive only operation.

CT_HALF_DUPLEX,

The channel supports both transmit and receive but only one at a time (the
crypto will context switch between receive and transmit portions of
algorithm.)

CT_FULL_DUPLEX,

The channel is configured for simultaneous receive and transmit (e.g. not
context switching).

CT_BLACK_SIDE,

The channel is configured for black-black encrypt and decrypt (e.g.
DAMA order wire).

CT_RED_SIDE

 4-20

 JTRS-5000SEC
Security API Service Definition

rev. 3.0
The channel is configured for red-red encrypt and decrypt.

algorithm

Identifies the crypto algorithm to use for the channel.
keys

Identifies the key(s) to use for the channel. Certain waveforms require the use of
multiple keys. A key identifier of "" indicates a session key must be generated.

bypassPolicy

Identifies the Bypass Policy to use for the channel. This is a waveform specific
bypass policy.

certificate

Only valid for instances where session keys are generated and not pulled from key
storage (e.g. Firefly exchange).

modes

The set of modes in which the algorithm will operate.

properties

 The set of properties for the algorithm such as straps, seed, etc.

4.5.1.3 State.
N/A.

4.5.1.4 New State.
The state of the new channel is IDLE.

4.5.1.5 Response.
This primitive returns an opaque channel identifier of type ChannelIdType

4.5.1.6 Originator.
This primitive is initiated by the service user.

4.5.1.7 Errors/Exceptions.
The following exceptions may be raised:

AssuranceLevel

The crypto is not certified to operate at the assurance level required by the channel
instantiation. Example:

One channel is already running with a SECRET key, the new channel is to be
instantiated with a TOP SECRET key and the Crypto is only certified for System
High operation.

CertificateNotRequired

A certificate is not required for this channel instantiation.

ChanTypeAlgorithmMismatch

 4-21

 JTRS-5000SEC
Security API Service Definition

rev. 3.0
The specified algorithm does not support the requested channel type.

DeviceError

The channel could not be created because of a hardware error.

InvalidAlgorithmId

 The algorithm ID is malformed or the algorithm does not exist.

InvalidCertificateId

 The certificate ID is malformed or the certificate does not exist.

InvalidKeyId

 The key ID is malformed or the key does not exist.

InvalidMode

 The mode does not exist.

InvalidPolicyId

 The policy ID is malformed or the policy does not exist.

InvalidProperty

 The property does not exist.

KeyAlgorithmMismatch

The specified key(s) and algorithm will not work together.

KeyExpired

The specified key(s) have expired and can no longer be used.

NotCOMSECAlgorithm

The specified algorithm is not a COMSEC algorithm but a TRANSEC algorithm.

UnknownError

The channel could not be created because of an indeterminate error.

 4-22

 JTRS-5000SEC
Security API Service Definition

rev. 3.0

4.5.2 CRYPT_GET_CHAN_CONFIG.
This primitive retrieves the configuration of an instantiated crypto channel.

4.5.2.1 Synopsis.
void getChannelConfig (

in ChannelIdType channel,
out ChannelConfigType configInfo

) raises (InvalidChannelId);

4.5.2.2 Parameters.
channel

The identifier of an instantiated channel.

configInfo

The channel configuration information. See 4.5.1.2 for the definition of
ChannelConfigType.

4.5.2.3 State.
The primitive is valid in any state.

4.5.2.4 New State.
The resulting state is unchanged.

4.5.2.5 Response.
N/A.

4.5.2.6 Originator.
This primitive is initiated by the service user.

4.5.2.7 Errors/Exceptions.
The following exceptions may be raised:

InvalidChannelId

The specified channel identifier does not correspond to an instantiated crypto channel.

 4-23

 JTRS-5000SEC
Security API Service Definition

rev. 3.0

4.5.3 CRYPT_DESTROY_CHAN.
This primitive destroys an instantiated crypto channel and returns all the resources allocated to it
back to the pool of available resources.

4.5.3.1 Synopsis.
void destroyChannel (

in ChannelIdType channel
) raises (InvalidChannelId, UnknownError);

4.5.3.2 Parameters.
channel

Identifies the instantiated channel to destroy.

4.5.3.3 State.
The primitive is valid in any state.

4.5.3.4 New State.
N/A.

4.5.3.5 Response.
N/A.

4.5.3.6 Originator.
This primitive is initiated by the service user.

4.5.3.7 Errors/Exceptions.
The following exceptions may be raised:

InvalidChannelId

The specified channel identifier does not correspond to an instantiated crypto channel.

UnknownError

An error of unidentified origin occurred during channel tear down.

 4-24

 JTRS-5000SEC
Security API Service Definition

rev. 3.0

4.5.4 CRYPT_START_CHAN.
This primitive starts a cryptographic channel for an identified mode.

4.5.4.1 Synopsis.
void startChannel (

in ChannelIdType channel,
in string mode

) raises (ChannelAlreadyStarted, ChannelInAlarm, DeviceError, InvalidChannelId, InvalidMode,
UnknownError);

4.5.4.2 Parameters.
channel

The identifier of the channel to start

mode

The mode of the channel to start

4.5.4.3 State.
This primitive is valid in the IDLE state.

4.5.4.4 New State.
The resulting state is ACTIVE.

4.5.4.5 Response.
N/A.

4.5.4.6 Originator.
This primitive is initiated by the service user.

4.5.4.7 Errors/Exceptions.
ChannelAlreadyStarted

The channel has already been started.

ChannelInAlarm
The channel is in crypto alarm and cannot be used.

DeviceError

A device error has occurred.

InvalidChannelId

The specified channel identifier does not correspond to an instantiated crypto channel.

InvalidMode

No such mode is available for the instantiated channel.

UnknownError

An unknown error has occurred.

 4-25

 JTRS-5000SEC
Security API Service Definition

rev. 3.0

4.5.5 CRYPT_STOP_CHAN.
This primitive stops a channel.

4.5.5.1 Synopsis.
void stopChannel (

in ChannelIdType channel,
in string mode

) raises (ChannelInAlarm, ChannelNotStarted, DeviceError, InvalidChannelId, InvalidMode,
UnknownError);

4.5.5.2 Parameters.
channel

Identifies the channel to stop.

mode

Identifies the mode to stop.

4.5.5.3 State.
This primitive is valid in the ACTIVE state.

4.5.5.4 New State.
The resulting state is unchanged.

4.5.5.5 Response.
N/A.

4.5.5.6 Originator.
This primitive is initiated by the service user.

4.5.5.7 Errors/Exceptions.
ChannelInAlarm

The channel is in crypto alarm and cannot be used.

ChannelNotStarted
The channel was never started.

DeviceError

A device error has occurred.

InvalidChannelId

The specified channel identifier does not correspond to an instantiated crypto channel.

InvalidMode

No such mode is available for the instantiated channel.

UnknownError

An unknown error has occurred.

 4-26

 JTRS-5000SEC
Security API Service Definition

rev. 3.0
4.5.6 CRYPT_RESET_CHAN.
This primitive resets a crypto channel. All internal states are reset to their default values.

4.5.6.1 Synopsis.
void resetChannel (

in ChannelIdType channel
) raises (DeviceError, InvalidChannelId, UnknownError);

4.5.6.2 Parameters.
channel

Identifies the channel to reset.

4.5.6.3 State.
This primitive is valid in any state.

4.5.6.4 New State.
The resulting state is of the channel is the default state upon channel creation.

4.5.6.5 Response.
N/A.

4.5.6.6 Originator.
This primitive is initiated by the service user.

4.5.6.7 Errors/Exceptions.
The following exceptions may be raised:

DeviceError

A device error occurred on the channel and the channel could not reset properly.

InvalidChannelId

The channel identifier does not correspond to an instantiated channel.

UnknownError

An unknown error occurred on the channel and the channel could not reset properly.

 4-27

 JTRS-5000SEC
Security API Service Definition

rev. 3.0

4.5.7 CRYPT_RESET.
This primitive forces a reset of the entire cryptographic subsystem.

4.5.7.1 Synopsis.
void resetCrypto ();

4.5.7.2 Parameters.
N/A.

4.5.7.3 State.
The primitive is valid in any state.

4.5.7.4 New State.
The resulting state is IDLE.

4.5.7.5 Response.
N/A.

4.5.7.6 Originator.
This primitive is initiated by the service user.

4.5.7.7 Errors/Exceptions.
N/A.

 4-28

 JTRS-5000SEC
Security API Service Definition

rev. 3.0

4.5.8 CRYPT_ENCRYPT.
This primitive is used for red-red or black-black encryption. It encrypts a sequence of octets and
returns the encrypted sequence to the service user.

4.5.8.1 Synopsis.
void Encrypt (

inout CF::OctetSequence data
) raises (ChannelInAlarm, DeviceError, InvalidChannelId, UnknownError);

4.5.8.2 Parameters.
data

Upon entry: The data to encrypt. Upon exit: the encrypted data.

4.5.8.3 State.
The primitive is valid in the ACTIVE state.

4.5.8.4 New State.
The resulting state is unchanged.

4.5.8.5 Response.
N/A.

4.5.8.6 Originator.
This primitive is initiated by the service user.

4.5.8.7 Errors/Exceptions.
ChannelInAlarm

The channel is in crypto alarm and cannot be used.

DeviceError

A device error has occurred.

UnknownError

An error of indeterminate origin occurred.

 4-29

 JTRS-5000SEC
Security API Service Definition

rev. 3.0

4.5.9 CRYPT_DECRYPT.
This primitive is used for red-red or black-black decryption. It decrypts a sequence of octets and
returns the decrypted sequence to the service user.

4.5.9.1 Synopsis.
void Decrypt (

inout CF::OctetSequence data
) raises (ChannelInAlarm, DeviceError, UnknownError);

4.5.9.2 Parameters.
data

Upon entry: The data to decrypt. Upon exit: the decrypted data.

4.5.9.3 State.
The primitive is valid in the ACTIVE state.

4.5.9.4 New State.
The resulting state is unchanged.

4.5.9.5 Response.
N/A.

4.5.9.6 Originator.
This primitive is initiated by the service user.

4.5.9.7 Errors/Exceptions.
ChannelInAlarm

The channel is in crypto alarm and cannot be used.

DeviceError

A device error has occurred.

UnknownError

An error of indeterminate origin occurred.

 4-30

 JTRS-5000SEC
Security API Service Definition

rev. 3.0

4.5.10 CRYPT_ENCRYPT_WITH_ID.
This primitive is used for red-red or black-black encryption. It encrypts a sequence of octets and
returns the encrypted sequence to the service user. Multiple channels are multiplexed through
the interface by channel ID.

4.5.10.1 Synopsis.
void Encrypt (

in ChannelIdType channel,
inout CF::OctetSequence data

) raises (ChannelInAlarm, DeviceError, InvalidChannelId, UnknownError);

4.5.10.2 Parameters.
channel

 The identifier for the channel to use for the encryption.

data

The data to encrypt and the returned encrypted data.

4.5.10.3 State.
The primitive is valid in the ACTIVE state.

4.5.10.4 New State.
The resulting state is unchanged.

4.5.10.5 Response.
N/A.

4.5.10.6 Originator.
This primitive is initiated by the service user.

4.5.10.7 Errors/Exceptions.
ChannelInAlarm

The channel is in crypto alarm and cannot be used.

DeviceError

A device error has occurred.

InvalidChannelId

The specified channel identifier does not correspond to an instantiated crypto channel.

UnknownError

An error of indeterminate origin occurred.

 4-31

 JTRS-5000SEC
Security API Service Definition

rev. 3.0

4.5.11 CRYPT_DECRYPT_WITH_ID.
This primitive is used for red-red or black-black decryption. It decrypts a sequence of octets and
returns the decrypted sequence to the service user. Multiple channels are multiplexed through
the interface by channel ID.

4.5.11.1 Synopsis.
void Decrypt (

in ChannelIdType channel,
inout CF::OctetSequence data

) raises (ChannelInAlarm, DeviceError, InvalidChannelId, UnknownError);

4.5.11.2 Parameters.
channel

 The identifier for the channel to use for the decryption.

data

The data to decrypt and the returned decrypted data.

4.5.11.3 State.
The primitive is valid in the ACTIVE state.

4.5.11.4 New State.
The resulting state is unchanged.

4.5.11.5 Response.
N/A.

4.5.11.6 Originator.
This primitive is initiated by the service user.

4.5.11.7 Errors/Exceptions.
ChannelInAlarm

The channel is in crypto alarm and cannot be used.

DeviceError

A device error has occurred.

InvalidChannelId

The specified channel identifier does not correspond to an instantiated crypto channel.

UnknownError

An error of indeterminate origin occurred.

 4-32

 JTRS-5000SEC
Security API Service Definition

rev. 3.0

4.5.12 CRYPT_TRANSFORM_REQ.
This primitive performs red-black encryption and black-red decryption. The location of the
object that realizes the interface determines whether decryption or encryption occurs.

4.5.12.1 Synopsis.
oneway void transform (

in any bypass,
in CF::OctetSequence payload

);

4.5.12.2 Parameters.
bypass

Waveform specific header information to be bypassed through the crypto (e.g. addresses,
and real time control).

payload

The payload to be encrypted/decrypted.

4.5.12.3 State.
The primitive is valid in the ACTIVE state.

4.5.12.4 New State.
The resulting state is unchanged.

4.5.12.5 Response.
N/A.

4.5.12.6 Originator.
This primitive is initiated by the service user. Note: this same primitive is initiated by the service
provider on the opposite side of the cryptographic boundary after the transform is complete. The
service user therefore must implement this interface for waveform data transfer out of the
cryptographic subsystem.

4.5.12.7 Errors/Exceptions.
N/A.

 4-33

 JTRS-5000SEC
Security API Service Definition

rev. 3.0

4.5.13 CRYPT_TRANSFORM_REQ_WITH_ID.
This primitive performs red-black encryption and black-red decryption. The location of the
object that realizes the interface determines whether decryption or encryption occurs. Multiple
channels are multiplexed through the interface by channel ID.

4.5.13.1 Synopsis.
oneway void transform (

in ChannelIdType channel,
in any bypass,
in CF::OctetSequence payload

);

4.5.13.2 Parameters.
channel

 The identifier for the channel to use for the encryption/decryption.

bypass

Waveform specific header information to be bypassed through the crypto (e.g. addresses,
and real time control).

payload

The payload to be encrypted/decrypted.

4.5.13.3 State.
The primitive is valid in the ACTIVE state.

4.5.13.4 New State.
The resulting state is unchanged.

4.5.13.5 Response.
N/A.

4.5.13.6 Originator.
This primitive is initiated by the service user.

4.5.13.7 Errors/Exceptions.
N/A.

 4-34

 JTRS-5000SEC
Security API Service Definition

rev. 3.0

4.6 KEY.
The Key Management Service is a specialization of the Fill::Manager as
illustrates.

Figure 4-8Figure 4-8

Manager

update(ID : in IDType) : boolean
getUpdateCount(ID : in IDType) : octet
storeKey(ID : in IDType) : void

<<Interface>>

Manager
(from Fill)

<<Interface>>

<<inherits>>

Figure 4-8. Class Diagram: Key Management Service

4.6.1 KEY_ZEROIZE.
This primitive deletes all instances of a single key from a security service as specified by the ID.
See paragraph 4.2.9 for the semantics and behavior.

4.6.2 KEY_ZEROIZE_ALL.
This primitive deletes all keys from a security service. See paragraph 4.2.10 for the semantics
and behavior.

4.6.3 KEY_GET_IDS.
This primitive retrieves the identifiers of all the keys resident in a security service. See
paragraph 4.2.11 for the semantics and behavior.

4.6.4 KEY_EXPIRY.
This primitive retrieves the expiration date and time for a given key within a security service.
See paragraph 4.2.12 for the semantics and behavior.

 4-35

 JTRS-5000SEC
Security API Service Definition

rev. 3.0

4.6.5 KEY_UPDATE.
This primitive updates a key, which in effect creates a new key. The ID remains the same but
the update count is incremented by one. Update counts of a key must remain in sync for peers to
communicate.

4.6.5.1 Synopsis.
boolean update (

in IdType id
) raises (InvalidId, KeyInUse);

4.6.5.2 Parameters.
id

The identifier of the key to update.

4.6.5.3 State.
The primitive is valid in any state.

4.6.5.4 New State.
The resulting state is unchanged.

4.6.5.5 Response.
N/A.

4.6.5.6 Originator.
This primitive is initiated by the service user.

4.6.5.7 Errors/Exceptions.
The following exception may be raised:

InvalidId

The key ID is either malformed or the key does not exist.

KeyInUse

The key cannot be update because it key is being used by an instantiated channel.

 4-36

 JTRS-5000SEC
Security API Service Definition

rev. 3.0

4.6.6 KEY_GET_UPDATE_COUNT.
This primitive retrieves the current update count for a key.

4.6.6.1 Synopsis.
octet getUpdateCount (

in IdType id
) raises (InvalidId);

4.6.6.2 Parameters.
id

The identifier of the key for which to retrieve the update count.

4.6.6.3 State.
The primitive is valid in any state.

4.6.6.4 New State.
The resulting state is unchanged.

4.6.6.5 Response.
The update count of the key is returned.

4.6.6.6 Originator.
This primitive is initiated by the service user.

4.6.6.7 Errors/Exceptions.
The following exception may be raised:

InvalidId

The key ID is either malformed or the key does not exist.

 4-37

 JTRS-5000SEC
Security API Service Definition

rev. 3.0

4.6.7 KEY_STORE_KEY.
This primitive stores a key that has been received from the fill port with no attached identifier.
{Note: keys loaded by the DS-102 protocol do not have attached identifiers.} This primitive
assigns an identifier.

4.6.7.1 Synopsis.
void storeKey (

in IdType id
) raises (DuplicateId, InvalidId, NoKey);

4.6.7.2 Parameters.
id

The identifier to be associated with the stored key.

4.6.7.3 State.
This primitive is valid in the PENDING_STORE state.

4.6.7.4 New State.
The resulting state is ENABLED, if no additional IDs are needed. Otherwise the state remains
unchanged.

4.6.7.5 Response.
 When additional IDs are needed, the FILL_PORT_SIGNAL_ASSIGN_ID primitive is invoked
on the service user.

4.6.7.6 Originator.
This primitive is initiated by the service user.

4.6.7.7 Errors/Exceptions.
The following exception may be raised:

DuplicateId

A key already exists with the specified identifier.

InvalidId

The key ID is malformed.

NoKey

 No loaded keys are awaiting storage.

 4-38

 JTRS-5000SEC
Security API Service Definition

rev. 3.0

4.7 TRANSEC.
Figure 4-9Figure 4-9 illustrates the TRANSEC management, control and Key Stream generation
services.

Manager

storeTransec(ID : in IDType) : void
getTransecUFill(ID : in IDType, fill : out CF::OctetSequence) : void

<<Interface>>

Manager
(from Fill)

<<Interface>>

<<inherits>>

OctetSequence
(from CF)

<<CORBATypedef>>

<<uses>>

Controller

createTransecCChannel(configInfo : in ChannelConfigType) : ChannelIDType
getTransecCChannelConfig(channel : in IDType, configInfo : out ChannelConfigType) : void
destroyTransecCChannel(channel : in ChannelIDType) : void

<<Interface>>

ChannelConfigType
algorithm : IDType
key : IDType

<<CORBAStruct>>

<<uses>>

Provider

genKeyStream(channel : in ChannelIDType, seed : in any, numBits : in unsigned long, keyStream : out CF::OctetSequence) : void
genNextKeyStream(channel : in ChannelIDType, numbits : in unsigned long, keyStream : out CF::OctetSequence) : void

<<Interface>>

InvalidChannelID
<<CORBAException>>

Figure 4-9. Class Diagram: TRANSEC Services

 4-39

 JTRS-5000SEC
Security API Service Definition

rev. 3.0

4.7.1 TRAN_CREATE_CHAN.
This primitive creates a classified TRANSEC channel. The channel will generate Key Stream
data.

4.7.1.1 Synopsis.
ChannelIdType createTransecCChannel (

in ChannelConfigType configInfo
) raises (InvalidAlgorithmId, InvalidKeyId, , KeyAlgorithmMismatch, NotTRANSECAlgorithm,
ResourcesUnavailable);

4.7.1.2 Parameters.
configInfo

The channelConfigType has the following structure:

struct ChannelConfigType {
IdType algorithm;
IdType key;

};

algorithm

Identifies the TRANSEC algorithm.

key

Identifies the TRANSEC key.

4.7.1.3 State.
N/A.

4.7.1.4 New State.
The resulting state is ACTIVE.

4.7.1.5 Response.
N/A.

4.7.1.6 Originator.
This primitive is initiated by the service user.

4.7.1.7 Errors/Exceptions.
The following exceptions may be raised:

InvalidAlgorithmId

The algorithm identifier is malformed or the algorithm does not exist.

InvalidKeyId

The key identifier is malformed or the key does not exist.

KeyAlgorithmMismatch

 4-40

 JTRS-5000SEC
Security API Service Definition

rev. 3.0
The selected key cannot be used with the selected algorithm.

NotTRANSECAlgorithm

 The selected algorithm is not a TRANSEC algorithm.

ResourcesUnavailable

The required resources are unavailable for instantiating the channel.

 4-41

 JTRS-5000SEC
Security API Service Definition

rev. 3.0

4.7.2 TRAN_GET_CHAN_CONFIG.
This primitive retrieves the configuration of an instantiated TRANSEC channel.

4.7.2.1 Synopsis.
void getTransecCChannelConfig (

in IdType channel,
out ChannelConfigType configInfo

) raises (InvalidChannelId);

4.7.2.2 Parameters.
channel

Identifies the instantiated channel from which to retrieve the configuration information.

configInfo

The returned channel configuration information. See paragraph 4.7.1.2 for the structure.

4.7.2.3 State.
This primitive is valid in any state.

4.7.2.4 New State.
The resulting state is unchanged.

4.7.2.5 Response.
N/A.

4.7.2.6 Originator.
This primitive is initiated by the service user.

4.7.2.7 Errors/Exceptions.
InvalidChannelId

The specified channel identifier does not correspond to an instantiated TRANSEC
channel.

 4-42

 JTRS-5000SEC
Security API Service Definition

rev. 3.0

4.7.3 TRAN_DESTROY_CHAN.
This primitive destroys an instantiated TRANSEC channel and returns all the resources allocated
to it back to the pool of available resources.

4.7.3.1 Synopsis.
void destroyTransecCChannel (

in ChannelIdType channel
) raises (InvalidChannelId);

4.7.3.2 Parameters.
channel

Identifies the instantiated channel to destroy.

4.7.3.3 State.
This primitive is valid in any state.

4.7.3.4 New State.
N/A.

4.7.3.5 Response.
N/A.

4.7.3.6 Originator.
This primitive is initiated by the service user.

4.7.3.7 Errors/Exceptions.
InvalidChannelId

The specified channel identifier does not correspond to an instantiated TRANSEC
channel.

 4-43

 JTRS-5000SEC
Security API Service Definition

rev. 3.0

4.7.4 TRAN_GEN_KEY_STREAM.
This primitive generates Key Stream data for a TRANSEC channel. The algorithm is re-seeded.

4.7.4.1 Synopsis.
void genKeyStream (

in ChannelIdType channel,
in any seed,
in unsigned long numBits,
out CF::OctetSequence keyStream

) raises (ChannelInAlarm, DeviceError, InvalidChannelId, UnknownError);

4.7.4.2 Parameters.
channel

Identifies the instantiated channel.

seed

Identifies the TRANSEC algorithm seed. They type of seed is algorithm dependent and
as such is defined as a CORBA any type.

numBits

The number of bits of Key Stream to generate.

keyStream

The generated Key Stream

4.7.4.3 State.
This primitive is valid in the ACTIVE state.

4.7.4.4 New State.
The resulting state is unchanged.

4.7.4.5 Response.
N/A.

4.7.4.6 Originator.
This primitive is initiated by the service user.

4.7.4.7 Errors/Exceptions.
The following exceptions may be raised:

ChannelInAlarm

The channel is in crypto alarm and cannot be used.

DeviceError

A device error has occurred.

InvalidChannelId

 4-44

 JTRS-5000SEC
Security API Service Definition

rev. 3.0
The specified channel identifier does not correspond to an instantiated crypto channel.

InvalidSeedType

The type of the TRANSEC seed does not correspond to that required by the algorithm.

InvalidSeedValue

The value of the TRANSEC seed is not valid (e.g. out of range).

UnknownError

An error of indeterminate origin occurred.

 4-45

 JTRS-5000SEC
Security API Service Definition

rev. 3.0

4.7.5 TRAN_GEN_NEXT_KEY_STREAM.
This primitive generates Key Stream data for a TRANSEC channel. The algorithm continues
generating data based on the seed last input for TRAN_GEN_KEY_STREAM or the seed input
for TRAN_CREATE_CHAN.

4.7.5.1 Synopsis.
void genNextKeyStream (

in ChannelIdType channel,
in unsigned long numbits,
out CF::OctetSequence keyStream

) raises (ChannelInAlarm, DeviceError, InvalidChannelId, UnknownError);

4.7.5.2 Parameters.
channel

Identifies the instantiated channel.

numBits
The number of bits of Key Stream to generate.

keyStream
The generated Key Stream

4.7.5.3 State.
This primitive is valid in the ACTIVE state.

4.7.5.4 New State.
The resulting state is unchanged.

4.7.5.5 Response.
N/A.

4.7.5.6 Originator.
This primitive is initiated by the service user.

4.7.5.7 Errors/Exceptions.
The following exceptions may be raised:

ChannelInAlarm

The channel is in alarm and cannot be used.

DeviceError

A device error has occurred.

InvalidChannelId

The specified channel identifier does not correspond to an instantiated crypto channel.

UnknownError

An error of indeterminate origin occurred.

 4-46

 JTRS-5000SEC
Security API Service Definition

rev. 3.0

4.7.6 TRAN_ZEROIZE.
This primitive deletes all instances of a single TRANSEC load from a security service as
specified by the ID. See paragraph 4.2.9 for the semantics and behavior.

4.7.7 TRAN_ZEROIZE_ALL.
This primitive deletes all TRANSEC loads from a security service. See paragraph 4.2.10 for the
semantics and behavior.

4.7.8 TRAN_GET_IDS.
This primitive retrieves the identifiers of all the TRANSEC loads resident in a security service.
See paragraph 4.2.11 for the semantics and behavior.

4.7.9 TRAN_EXPIRY.
This primitive retrieves the expiration date and time for a given TRANSEC load within a
security service. See paragraph 4.2.12 for the semantics and behavior.

 4-47

 JTRS-5000SEC
Security API Service Definition

rev. 3.0

4.7.10 TRAN_STORE.
 This primitive stores TRANSEC information that is received from the fill port with no attached
identifier. {Note: TRANSEC information loaded by the DS-102 protocol does not have attached
identifiers.} This primitive assigns an identifier.

4.7.10.1 Synopsis.
void storeTransec (

in IdType id
) raises (DuplicateId, InvalidId);

4.7.10.2 Parameters.
id

The identifier to be associated with the stored TRANSEC fill information.

4.7.10.3 State.
 This primitive is valid in the PENDING_STORE state.

4.7.10.4 New State.
 The resulting state is ENABLED if no additional IDs are needed. Otherwise the state remains
unchanged.

4.7.10.5 Response.
 When additional IDs are needed, the FILL_PORT_SIGNAL_ASSIGN_ID primitive is invoked
on the service user.

4.7.10.6 Originator.
This primitive is initiated by the service user.

4.7.10.7 Errors/Exceptions.
The following exceptions may be raised:

DuplicateId

TRANSEC information already exists with the specified identifier.

InvalidId

The key ID is malformed.

 4-48

 JTRS-5000SEC
Security API Service Definition

rev. 3.0

4.7.11 TRAN_GET_FILL.
This primitive retrieves unclassified fill information for use by TRANSEC algorithms that reside
outside the cryptographic boundary.

4.7.11.1 Synopsis.
void getTransecUFill (

in IdType id,
out CF::OctetSequence fill

) raises (InvalidId);

4.7.11.2 Parameters.
id

The identifier of the TRANSEC fill to retrieve.

fill

The retrieved unclassified TRANSEC fill information.

4.7.11.3 State.
This primitive can be issued from any state.

4.7.11.4 New State.
The resulting state is unchanged.

4.7.11.5 Response.
N/A.

4.7.11.6 Originator.
This primitive is initiated by the service user.

4.7.11.7 Errors/Exceptions.
The following exception may be raised:

InvalidId

The identifier is malformed or the TRANSEC fill information does not exist.

 4-49

 JTRS-5000SEC
Security API Service Definition

rev. 3.0

4.8 POLICY.

Manager
(from Fill)

<<Interface>>

Manager

getPolicy(ID : in IDType) : CORBA::Policy

<<Interface>>

Policy
(from CORBA)

<<Interface>>

<<uses>>

IDType
(from JTRSSecurity)

<<CORBATypedef>>

Figure 4-10. Class Diagram: Policy Management Service

4.8.1 POL_ZEROIZE.
This primitive deletes all instances of a single policy from a security service as specified by the
ID. See paragraph 4.2.9 for the semantics and behavior.

4.8.2 POL_ZEROIZE_ALL.
This primitive deletes all policies from a security service. See paragraph 4.2.10 for the semantics
and behavior.

4.8.3 POL_GET_IDS.
This primitive retrieves the identifiers of all the policies resident in a security service. See
paragraph 4.2.11 for the semantics and behavior.

4.8.4 POL_EXPIRY.
This primitive retrieves the expiration date and time for a given policy within a security service.
See paragraph 4.2.12 for the semantics and behavior.

 4-50

 JTRS-5000SEC
Security API Service Definition

rev. 3.0

4.8.5 POL_GET_POLICY.
This primitive retrieves a policy from the Policy Manager. The information contained in the
policy may then be used by an enforcement mechanism to implement access control, bypass
filtering, etc. {Note: Policies enter the cryptographic subsystem in XML format. The XML
definitions for specific policies have yet to be defined. For policies that are used outside the
cryptographic boundary, IDL definitions must exist. The IDL definitions will be specializations
of the CORBA::Policy interface. These definitions have yet to be defined as well.}

4.8.5.1 Synopsis.
CORBA::Policy getPolicy (

in IdType id
) raises (InvalidId);

4.8.5.2 Parameters.
id

The identifier of the policy to retrieve

4.8.5.3 State.
N/A.

4.8.5.4 New State.
N/A.

4.8.5.5 Response.
A CORBA Policy is returned. The policy may be narrowed to the specific policy type of
interest.

4.8.5.6 Originator.
This primitive is initiated by the service user.

4.8.5.7 Errors/Exceptions.
The following exception may be raised:

InvalidId

The policy identifier is malformed or the policy does not exist.

 4-51

 JTRS-5000SEC
Security API Service Definition

rev. 3.0

4.9 INTEGRITY AND AUTHENTICATION.

Provider

signFile(context : in ContextType, fileSystem : in CF::FileSystem, file : in string) : void
verifyFile(context : in ContextType, fileSystem : in CF::FileSystem, file : in string) : boolean
hashData(context : in ContextType, data : in CF::OctetSequence) : void
signHash(context : in ContextType) : SignatureType
verifySignature(context : in ContextType, signature : in SignatureType) : boolean

<<Interface>>

SignatureType
<<CORBATypedef>>

OctetSequence
(from CF)

<<CORBATypedef>>

<<uses>>
<<uses>>

Controller

createContext(certificateID : in IDType) : ContextType
deleteContext(context : in ContextType) : void

<<Interface>>

ContextType
<<CORBATypedef>>

<<uses>>

<<uses>>

Figure 4-11. Class Diagram: Integrity and Authentication Services

Figure 5-4Figure 5-4 shows the states of an Integrity and Authentication context from creation to
destruction.

 4-52

 JTRS-5000SEC
Security API Service Definition

rev. 3.0

4.9.1 IA_CREATE_CONTEXT.
This primitive creates a context for performing integrity and authentication. The primitive
returns a context for use in subsequent invocation of Integrity and Authentication primitives.

4.9.1.1 Synopsis.
ContextType createContext (

in IdType certificateId
) raises (CertificateExpired, InvalidCertificateId);

4.9.1.2 Parameters.
certificateId

The identifier of the certificate to use for the context. The certificate identifies the private
and public key pairs to be used.

4.9.1.3 State.
There is no state until a context is created.

4.9.1.4 New State.
The resulting state is HASH_INITIALIZED.

4.9.1.5 Response.
The primitive returns and opaque handle which represents the created context.

4.9.1.6 Originator.
This primitive is initiated by the service user.

4.9.1.7 Errors/Exceptions.
The following exceptions are raised:

CertificateExpired

The identified certificate has expired and cannot be used.

InvalidCertificateId

The certificate identifier is malformed or the certificate does not exist.

 4-53

 JTRS-5000SEC
Security API Service Definition

rev. 3.0

4.9.2 IA_DESTROY_CONTEXT .
This primitive destroys the context created by the IA_CREATE_CONTEXT primitive.

4.9.2.1 Synopsis.
void deleteContext (

in ContextType contextId
) raises (InvalidContextId);

4.9.2.2 Parameters.
contextId

The identifier of the context to destroy.

4.9.2.3 State.
This primitive may issued from any state.

4.9.2.4 New State.
There is no state as the context is destroyed.

4.9.2.5 Response.
N/A.

4.9.2.6 Originator.
This primitive is initiated by the service user.

4.9.2.7 Errors/Exceptions.
The following exception is raised:

InvalidContextId

The context identifier does not correspond to a valid context.

 4-54

 JTRS-5000SEC
Security API Service Definition

rev. 3.0

4.9.3 IA_SIGN_FILE.
This primitive performs a secure hash of the contents of a file, signs the hash, attaches the
signature to the file and initializes the internal hash associated with the context. This primitive
may be called multiple times with the same context to sign multiple files.

4.9.3.1 Synopsis.
void signFile (

in ContextType contextId,
in CF::FileSystem fileSystem,
in string file

) raises (InvalidContextId, HashNotInitialized);

4.9.3.2 Parameters.
contextId

The identifier of the context to use for signing the file.

fileSystem

Identifies the location of the file to be signed.

file

The name of the file to be signed.

4.9.3.3 State.
This primitive may only be issued when the context is in the HASH_INITIALIZED state.

4.9.3.4 New State.
The resulting state is unchanged.

4.9.3.5 Response.
N/A.

4.9.3.6 Originator.
This primitive is initiated by the service user.

4.9.3.7 Errors/Exceptions.
InvalidContextId

The context identifier does not correspond to a valid context.

HashNotInitialized

The context's current state is HASH_IN_PROGRESS and cannot be used for signing or
verifying whole files until the current hash has been signed or verified.

 4-55

 JTRS-5000SEC
Security API Service Definition

rev. 3.0

4.9.4 IA_VERIFY_FILE.
This primitive decrypts the signature attached to the file into a hash value, performs a secure
hash of the contents of the file and compares the decrypted hash with the computed hash. If they
are identical, the file is verified. The internal hash is initialized upon completion. This primitive
may be called multiple times with the same context to verify multiple files.

4.9.4.1 Synopsis.
boolean verifyFile (

in ContextType contextId,
in CF::FileSystem fileSystem,
in string file

) raises (InvalidContextId, HasNotInitialized);

4.9.4.2 Parameters.
contextId

Identifies the context to use to verify the file.

fileSystem

Identifies the location of the file to be verified.

file

The name of the file to be verified.

4.9.4.3 State.
This primitive may only be issued when the context is in the HASH_INITIALIZED state.

4.9.4.4 New State.
The resulting state is unchanged.

4.9.4.5 Response.
This primitive returns a boolean:

FALSE The file is not verified.

TRUE The file is verified.

4.9.4.6 Originator.
This primitive is initiated by the service user.

4.9.4.7 Errors/Exceptions.
InvalidContextId

The context identifier does not correspond to a valid context.

HashNotInitialized

The context's current state is HASH_IN_PROGRESS and cannot be used for signing or
verifying whole files until the current hash has been signed or verified.

 4-56

 JTRS-5000SEC
Security API Service Definition

rev. 3.0

4.9.5 IA_HASH.
This primitive performs a secure hash of a block of data. This function may be called iteratively
to compute the hash over several blocks of data. The IA_SIGN_FILE or IA_VERIFY_FILE
primitives may not be called once this primitive is invoked for a context until an
IA_SIGN_HASH or IA_VERIFY primitive has been called.

4.9.5.1 Synopsis.
void hashData (

in ContextType contextId,
in CF::OctetSequence data

) raises (InvalidContextId);

4.9.5.2 Parameters.
contextId

Identifies the context to use to verify the file.

data

The block of data for which to compute the hash.

4.9.5.3 State.
This primitive may be issued in any state.

4.9.5.4 New State.
The resulting state is HASH_IN_PROGRESS.

4.9.5.5 Response.
N/A.

4.9.5.6 Originator.
This primitive is initiated by the service user.

4.9.5.7 Errors/Exceptions.
InvalidContextId

The context identifier does not correspond to a valid context.

 4-57

 JTRS-5000SEC
Security API Service Definition

rev. 3.0

4.9.6 IA_SIGN_HASH.
This primitive signs the computed hash value held within the integrity and authentication context
and returns the digital signature to the caller. The internal hash is initialized upon completion.

4.9.6.1 Synopsis.
SignatureType signHash (

in ContextType contextId
) raises (InvalidContextId);

4.9.6.2 Parameters.
contextId

Identifies the context to use sign the hash.

4.9.6.3 State.
This primitive may only be issued in the HASH_IN_PROGRESS state.

4.9.6.4 New State.
The resulting state is HASH_INITIALIZED.

4.9.6.5 Response.
N/A.

4.9.6.6 Originator.
This primitive is initiated by the service user.

4.9.6.7 Errors/Exceptions.
InvalidContextId

The context identifier does not correspond to a valid context.

NoHashCalculated

The context's current state is HASH_INITIALZED. There have been no invocations of
the IA_HASH primitive to calculate a hash value.

 4-58

 JTRS-5000SEC
Security API Service Definition

rev. 3.0

4.9.7 IA_VERIFY_HASH.
This primitive decrypts the provided signature and compares it with the computed hash value
held within the integrity and authentication context. The internal hash is initialized upon
completion.

4.9.7.1 Synopsis.
boolean verifySignature (

in ContextType contextId,
in SignatureType signature

) raises (InvalidContextId);

4.9.7.2 Parameters.
contextId

Identifies the context to use sign the verify the hash.

signature

The signature to decrypt and compare against the computed hash.

4.9.7.3 State.
This primitive may only be issued in the HASH_IN_PROGRESS state.

4.9.7.4 New State.
The resulting state is HASH_INITIALIZED.

4.9.7.5 Response.
This primitive returns a boolean:

FALSE The hash is not verified.

TRUE The hash is verified.

4.9.7.6 Originator.
This primitive is initiated by the service user.

4.9.7.7 Errors/Exceptions.
InvalidContextId

The context identifier does not correspond to a valid context.

NoHashCalculated

The context's current state is HASH_INITIALZED. There have been no invocations of
the IA_HASH primitive to calculate a hash value.

 4-59

 JTRS-5000SEC
Security API Service Definition

rev. 3.0

4.10 ALARM.
Figure 4-12Figure 4-12 shows the type definitions defined for audit records to be logged when
security alarms occur. {Note: It is assumed that the CosLwLog LogProducer interface will be
used for this function. The CosLwLog LogProducer as it is defined currently does not support
this but a change proposal is pending to make the necessary changes.} The alarm record covers
many different types of alarms and is not available for general consumption. Access to the
records will be limited by security policies.

CauseType
AC_DUPLICATE_INFO
AC_INFO_MISSING
AC_INFO_MOD_DETECTED
AC_INFO_OUT_OF_SEQUENCE
AC_UNEXPECTED_INFO
AC_DENIAL_OF_SERVICE
AC_OUT_OF_SERVICE
AC_PROCEDURAL_ERROR
AC_UNSPECIFIED_REASON
AC_CABLE_TAMPER
AC_INTRUSION_DETECTION
AC_AUTHENTICATION_FAILURE
AC_BREACH_OF_CONFIDENTIALITY
AC_NON_REPUDIATION_FAILURE
AC_UNAUTHORIZED_ACCESS_ATTEMPT
AC_DELAYED_INFO
AC_KEY_EXPIRED
AC_OUT_OF_HOURS_ACTIVITY

<<CORBAEnum>>

SeverityType
AS_INDETERMINATE
AS_CRITICAL
AS_MAJOR
AS_MINOR
AS_WARNING

<<CORBAEnum>>

EventType
AE_INTEGRITY_VIOLATION
AE_OPERATIONAL_VIOLATION
AE_PHYSICAL_VIOLATION
AE_SERVICE_VIOLATION
AE_TIME_DOMAIN_VIOLATION

<<CORBAEnum>>

RecordType
event : EventType
cause : CauseType
severity : SeverityType
alarmDetector : string
serviceUser : string
serviceProvider : string
additionalInfo : string

<<CORBAStruct>>

<<uses>>

<<uses>>

<<uses>>

Figure 4-12. Class Diagram: Alarm Type Definitions

Figure 4-13Figure 4-13 shows the alarm service it self. This is a service for notifying the
Security Service User and is a simple indicator that a Crypto Alarm has occurred. There are no
user access controls on this indicator. The implementation of the service resides with Security
Service User. The Security Service merely invokes it when a crypto Alarm has occurred.

 4-60

 JTRS-5000SEC
Security API Service Definition

rev. 3.0

User

signalAlarm(qualifier : in string) : void

<<Interface>>

Figure 4-13. Class Diagram: Alarm Service

 4-61

 JTRS-5000SEC
Security API Service Definition

rev. 3.0

4.10.1 ALARM_SIGNAL.
This primitive signals a security service user of a crypto alarm.

4.10.1.1 Synopsis.
void signalAlarm (

in string qualifier
);

4.10.1.2 Parameters.
qualifier

 A string to provide additional information about the alarm such as a channel identifier.

4.10.1.3 State.
This primitive may only be issued when a Crypto or TRANSEC channel enters the ALARM
state.

4.10.1.4 New State.
The state remains unchanged.

4.10.1.5 Response.
N/A.

4.10.1.6 Originator.
This primitive is initiated by the service provider.

4.10.1.7 Errors/Exceptions.
N/A.

 4-62

 JTRS-5000SEC
Security API Service Definition

rev. 3.0

4.11 TIME.
The Time Management service is shown in . Figure 4-14Figure 4-14

Manager

setTime(time : in TODType) : void
getTime() : TODType
setDate(date : in DateType)
getDate() : DateType

<<Interface>>

TODType
(from JTRSSecuri ty)

<<CORBAStruct>>
DateType

(from JTRSSecuri ty)

<<CORBAStruct>>

<<uses>>

<<uses>>

Figure 4-14. Class Diagram: Time Management Service

 4-63

 JTRS-5000SEC
Security API Service Definition

rev. 3.0

4.11.1 TIME_SET_TOD
This primitive sets the time of day kept within the cryptographic subsystem.

4.11.1.1 Synopsis.
void setTime (

in TODType time
) raises (InvalidValue);

4.11.1.2 Parameters.
time

The time of day to set.

TODType has the following structure:

struct TODType {

 unsigned long seconds;
 unsigned long nanoseconds;
 };

seconds

The number of seconds past midnight. A value greater than 86399 is invalid and
will raise an InvalidValue exception

nanoseconds

The number of nanoseconds since the last increment of seconds. A value greater
than 999,999,999 is invalid and will raise an InvalidValue exception.

4.11.1.3 State.
N/A.

4.11.1.4 New State.
N/A.

4.11.1.5 Response.
N/A.

4.11.1.6 Originator.
This primitive is initiated by the service user.

4.11.1.7 Errors/Exceptions.
The following exception may be raised:

InvalidValue

The time is not a valid time of day.

 4-64

 JTRS-5000SEC
Security API Service Definition

rev. 3.0

4.11.2 TIME_GET_TOD.
This primitive returns the time of day maintained by the cryptographic subsystem.

4.11.2.1 Synopsis.
TODType getTime ();

4.11.2.2 Parameters.
N/A.

4.11.2.3 State.
N/A.

4.11.2.4 New State.
N/A.

4.11.2.5 Response.
The time of day is returned. See paragraph 4.11.1.2 for the structure.

4.11.2.6 Originator.
This primitive is initiated by the service user.

4.11.2.7 Errors/Exceptions.
N/A.

 4-65

 JTRS-5000SEC
Security API Service Definition

rev. 3.0

4.11.3 TIME_SET_DATE.
This primitive sets the date kept within the cryptographic subsystem.

4.11.3.1 Synopsis.
void setDate (

in DateType date
) raises (InvalidValue);

4.11.3.2 Parameters.
date

The date to set. DateType has the following structure:

struct DateType {
YearType year;
DayType day;

};

year

The year relative to an established reference.
day

The day. Valid values are 1-365 or 366 depending on the year. A value outside
this range causes InvalidValue exception to be raised.

4.11.3.3 State.
N/A.

4.11.3.4 New State.
N/A.

4.11.3.5 Response.
N/A.

4.11.3.6 Originator.
This primitive is initiated by the service user.

4.11.3.7 Errors/Exceptions.
The following exception may be raised:

InvalidValue

The date is not a valid date.

 4-66

 JTRS-5000SEC
Security API Service Definition

rev. 3.0

4.11.4 TIME_GET_DATE.
This primitive returns the date maintained by the cryptographic subsystem.

4.11.4.1 Synopsis.
DateType getDate ();

4.11.4.2 Parameters.
N/A.

4.11.4.3 State.
N/A.

4.11.4.4 New State.
N/A.

4.11.4.5 Response.
The date is returned. See paragraph 4.11.3.2 for the structure.

4.11.4.6 Originator.
This primitive is initiated by the service user.

4.11.4.7 Errors/Exceptions.
N/A.

 4-67

 JTRS-5000SEC
Security API Service Definition

rev. 3.0

4.12 GPS.

Manager
(from Transec)

<<Interface>>

Manager
<<Interface>>

<<inherits>>

Figure 4-15. Class Diagram: GPS Management Service

4.12.1 GPS_ZEROIZE.
This primitive deletes all instances of a single TRANSEC load from a security service as
specified by the ID. See paragraph 4.2.9 for the semantics and behavior.

4.12.2 GPS_ZEROIZE_ALL.
This primitive deletes all TRANSEC loads from a security service. See paragraph 4.2.10 for the
semantics and behavior.

4.12.3 GPS_GET_IDS.
This primitive retrieves the identifiers of all the TRANSEC loads resident in a security service.
See paragraph 4.2.11 for the semantics and behavior.

4.12.4 GPS_EXPIRY.
This primitive retrieves the expiration date and time for a given TRANSEC load within a
security service. See paragraph 4.2.12 for the semantics and behavior.

 4-68

 JTRS-5000SEC
Security API Service Definition

rev. 3.0

5 ALLOWABLE SEQUENCE OF SERVICE PRIMITIVES.
There are services within the security API which when implemented require maintenance of state
information. This section identifies the states associated with these services and the order in
which the service primitives may be invoked.

5.1 FILL STATES.
Table 5-1Table 5-1 describes the states associated with an instantiated crypto channel

Table 5-1. Fill States

STATE DESCRIPTION

DISABLED The fill port is disabled

ENABLED The fill port is enabled

PENDING_STORE The fill information requires an ID to be assigned

The state diagram in illustrates the allowable sequence of primitives for fill
operations.

Figure 5-1Figure 5-1

 5-1

 JTRS-5000SEC
Security API Service Definition

rev. 3.0

DISABLED

ENABLED

PENDING_
STORE

FILL_PORT_CONFIGURE /
FILL_PORT_SIGNAL_CONNECT

FILL_PORT_E NABLE /
FILL_PORT_SIGNAL_LOAD

FILL_PORT_DISABLE

FILL_PORT_LOAD[
LR_DEVICE_ERROR ||

LR_CORRUPTED_LOAD]

FILL_PORT_LOAD[
LR_SUCCESS & & IDs

loaded]

FILL_PORT_LOAD[LR_SUCCESS
&& IDs needed] /

FILL_PORT_S IGNAL_AS SIGN_ID

KEY_STORE_KEY ||
TRAN_STORE[more IDs needed] /

FILL_PORT_SIGNAL_ASSIGN_ID

KEY_STORE_KEY ||
TRAN_STORE[all IDs assigned]

Figure 5-1. Fill State Transitions

5.2 CRYPTO CHANNEL STATES.

 5-2

 JTRS-5000SEC
Security API Service Definition

rev. 3.0
Table 5-2

 5-3

 JTRS-5000SEC
Security API Service Definition

rev. 3.0
Table 5-2 describes the states associated with an instantiated crypto channel.

 5-4

 JTRS-5000SEC
Security API Service Definition

rev. 3.0

Table 5-2. Crypto Channel States

STATE DESCRIPTION

IDLE Crypto channel is created but has not been started

ACTIVE Crypto channel has been started in a given mode

ALARM An alarm has occurred and the channel has been disabled.

The state diagram in illustrates the allowable sequence of primitives for a
crypto channel from creation to destruction.

Figure 5-2Figure 5-2

IDLE
<<crypto channel state>>

ACTIVE
<<crypto channel state>>

ALARM
<<crypto channel state>>

No channel

CRYPT_CREATE_CHAN

Channel Destroyed

Alarm Condition Detected

CRYPT_STOP_CHAN

CRYPT_DESTROY_CHAN

CRYPT_RESET_CHAN

CRYPT_RESET_CHAN

CRYPT_DESTROY_CHAN

CRYPT_RESET_CHAN

CRYPT_START_CHAN

CRYPT_DESTROY_CHAN

Figure 5-2. State Diagram: Crypto Channel State Transitions

 5-5

 JTRS-5000SEC
Security API Service Definition

rev. 3.0

5.3 TRANSEC CHANNEL STATES.
Table 5-3Table 5-3 describes the states associated with an instantiated crypto channel.

Table 5-3. TRANSEC Channel States

STATE DESCRIPTION

ACTIVE TRANSEC channel has been started.

ALARM An alarm has occurred and the channel has been disabled.

The state diagram in illustrates the allowable sequence of primitives for a
crypto channel from creation to destruction.

Table 5-3Table 5-3

ACTIVE
<<crypto channel state>>

ALARM
<<crypto channel state>>

No channel

Channel Destroyed

Alarm Condition Detected

TRANS_DESTROY_CHAN

TRANS_DESTROY_CHAN

TRANS_CREATE_CHAN

Figure 5-3. State Diagram: TRANSEC Channel State Transitions

 5-6

 JTRS-5000SEC
Security API Service Definition

rev. 3.0

5.4 INTEGRITY AND AUTHENTICATION STATES.
Table 5-4Table 5-4 describes the states associated with an Integrity and Authentication context.

Table 5-4. Integrity and Authentication States

STATE DESCRIPTION

HASH_INITIALIZED The internal hash associated with the context has been
initialized and is ready for use.

HASH_IN_PROGRESS The hash has been updated from a chunk of data and cannot be
used for verification or signature.

HASH_INITIALIZED
<<context state>>

HASH_IN_PROGRESS
<<context state>>

No Context

IA_HASH

IA_SIGN_FILE, IA_VERIFY_FILE

Context Destroyed

IA_CREATE_CONTEXT

IA_DESTROY_CONTEXT

IA_SIGN_HASH, IA_VERIFY_HASH IA_HASH

Figure 5-4. State Diagram: Integrity and Authentication Context State Transitions

 5-7

 JTRS-5000SEC
Security API Service Definition

rev. 3.0

 5-8

 JTRS-5000SEC
Security API Service Definition

rev. 3.0

APPENDIX A. PRECEDENCE OF SERVICE PRIMITIVES

Not applicable.

 A-1

 JTRS-5000SEC
Security API Service Definition

rev. 3.0

 A-2

 JTRS-5000SEC
Security API Service Definition

rev. 3.0

APPENDIX B. SERVICE USER GUIDELINES

{TBD}.

 B-1

 JTRS-5000SEC
Security API Service Definition

rev. 3.0

 B-2

 JTRS-5000SEC
Security API Service Definition

rev. 3.0

APPENDIX C. SERVICE PROVIDER-SPECIFIC INFORMATION

{TBD}.

 C-1

 JTRS-5000SEC
Security API Service Definition

rev. 3.0

 C-2

 JTRS-5000SEC
Security API Service Definition

rev. 3.0

APPENDIX D. IDL

#ifndef __JTRSSECURITY_DEFINED
#define __JTRSSECURITY_DEFINED

/* CmIdentification
%X% %Q% %Z% %W% */

#include "cf.idl"
#include "orb.idl"

module JTRSSecurity {

typedef string IdType;

/* Sequence of IDs. Used identify multiple keys, algorithms, etc. */

typedef sequence <IdType> IdSequenceType;

/* An example Security Manager that aggregates the fill managers. */

interface Manager {
exception ZeroizeFailed {
};

/* Zeroize all fill data (keys, algorithms, transec, certificates
and policies).

@roseuid 39E4D4BD0164 */
void zeroizeAll ();

};

typedef unsigned short YearType;

typedef octet MonthType;

typedef octet DayType;

/* Place holder for date definition. */

struct DateType {
YearType year;
DayType day;

};

/* Place holder for TOD definition. This current definition represents
time past midnight. */

struct TODType {
unsigned long seconds;
unsigned long nanoseconds;

};

 D-1

 JTRS-5000SEC
Security API Service Definition

rev. 3.0

/* Used to identify an instantiated crypto or transec channel. */

typedef unsigned long ChannelIdType;

module IandA {

typedef CF::OctetSequence SignatureType;

typedef unsigned long ContextType;

exception InvalidContextId {
};

/* This interface provides operations to verify the integrity and
authenticity of files and data. A channel of CT_BUSS_FILL must be create
first. */

interface Provider {
exception HashNotInitialized {
};

exception NoHashCalculated {
};

/* This operation attaches a digital signature to a file.
@roseuid 39EB2CA401C7 */
void signFile (

in ContextType contextId,
in CF::FileSystem fileSystem,
in string file
)
raises (InvalidContextId, HashNotInitialized);

/* This operation verifies the digital signature attached
to a file.

@roseuid 39EB2CAA0017 */
boolean verifyFile (

in ContextType contextId,
in CF::FileSystem fileSystem,
in string file
)
raises (InvalidContextId, HashNotInitialized);

/* This operation hashes the input data into the existing
hash represented by the channel

@roseuid 39F0D1E70005 */
void hashData (

in ContextType contextId,
in CF::OctetSequence data
)
raises (InvalidContextId);

/* This operation signs the hash represented by the
channel.

@roseuid 39F0CF5C0171 */

 D-2

 JTRS-5000SEC
Security API Service Definition

rev. 3.0
SignatureType signHash (

in ContextType contextId
)
raises (InvalidContextId, NoHashCalculated);

/* This operation verifies that the input signature matches
the signature generated from the hash represented by the channel

@roseuid 39F0CF880142 */
boolean verifySignature (

in ContextType contextId,
in SignatureType signature
)
raises (InvalidContextId, NoHashCalculated);

};

interface Controller {
exception InvalidCertificateId {
};

exception CertificateExpired {
};

/*
@roseuid 3A0452EC01F7 */
ContextType createContext (

in IdType certificateId
)
raises (InvalidCertificateId, CertificateExpired);

/*
@roseuid 3A0452FF015E */
void deleteContext (

in ContextType contextId
)
raises (InvalidContextId);

};

};

module Fill {

/* This enum defines the possible configurations for a fill port.
The load operation will behave differently based on the port configuration.
*/

enum PortType {
PT_DS101,
PT_DS102,
PT_RS232

};

/* This interface must be implemented by the user of a fill port
to support DS102 type fills. */

 D-3

 JTRS-5000SEC
Security API Service Definition

rev. 3.0
interface PortUser {

/* This operation signals the user to connect the fill
device to the fill port.

@roseuid 39DB3985034B */
void signalConnectDevice (

in string instruction
);

/* This operation signals the user to set the selector on
the DS102 fill device and then invoke the Fill::Port::load operation

@roseuid 39DB3869005D */
void signalLoad (

in string instruction
);

/* This operation signals the user to assign an ID to the
fill data after being input using the Fill::Port::load operation.
The user will then invoke the requisite storeDS102 operation.

@roseuid 39DB2F4D0353 */
void signalAssignId (

in string instruction
);

};

/* This is the interface for filling the radio from a file (e.g.
black fills). A channel of type CT_BUSS_FILL must be created first. */

interface Bus {
exception FileNotValid {
};

/* This operation loads fill data from a file.
@roseuid 39EC9907025F */
void load (

in CF::FileSystem fileSys,
in string fileName
);

};

enum LoadResultType {
LR_COMPLETED,
LR_DEVICE_ERROR,
LR_CORRUPTED_LOAD

};

/* This interface provides functionality for controlling a fill
port. */

interface Port {
/* This operation configures the port for one of

DS101,DS102 or RS232 operation.
@roseuid 39DB3B690134 */
void configure (

in PortType type

 D-4

 JTRS-5000SEC
Security API Service Definition

rev. 3.0
);

/* This operation enables the fill port represented by an
object with the Fill::Port interface

@roseuid 39DB3C03037A */
void enable ();

/* This operation disables the fill port represented by an
object with the Fill::Port interface

@roseuid 39DB3C080273 */
void disable ();

/* This operation causes data to be loaded from the fill
device into the Fill::Port.
If the port is configured for DS101 then the load is automated and the fill
information is
automatically distributed to various fill locations. If the port is
configured for DS102 then only one
fill is performed (i.e. one key, one hopset, etc.). If the port is
configured for RS-232...

@roseuid 39E355E500E9 */
LoadResultType load ();

};

/* This interface provides for zeroizing and obtaining the
identity of fill data in the radio. */

interface Manager {
exception InvalidId {
};

exception ZeroizeFailed {
};

exception ElementInUse {
};

/* This operation zeroizes the fill element identified by
ID.

@roseuid 39E338460149 */
void zeroize (

in IdType id,
in boolean override
)
raises (InvalidId, ElementInUse, ZeroizeFailed);

/* This operation zeroizes all fill elements associated
with the manager. (e.g. keys for a Key Manager)

@roseuid 39E33846015D */
void zeroizeAll ()

raises (ZeroizeFailed);

/* This operation gets a list of all the IDs for which the
manager is responsible (e.g. the IDs of all the algorithms loaded in to an
Algorithm Manager.

 D-5

 JTRS-5000SEC
Security API Service Definition

rev. 3.0
@roseuid 39E338460171 */
void getIds (

out IdSequenceType ids
);

/*
@roseuid 39EF54900101 */
boolean expiry (

in IdType id,
out DateType date,
out TODType time
)
raises (InvalidId);

};

};

module Key {

/* This interface represents the fill management interface for
key fills. */

interface Manager : Fill::Manager {
exception NoKey {
};

exception KeyInUse {
};

exception DuplicateId {
};

/* Store the fill data with the name provided in ID
@roseuid 39E3637B0072 */
void storeKey (

in IdType id
)
raises (DuplicateId, InvalidId, NoKey);

/* Perform a key update on the key identified by ID.
@roseuid 39DC8745038C */
boolean update (

in IdType id
)
raises (InvalidId, KeyInUse);

/* Get the current update count for the key identified by
ID.

@roseuid 39E359C8000D */
octet getUpdateCount (

in IdType id
)
raises (InvalidId);

};

 D-6

 JTRS-5000SEC
Security API Service Definition

rev. 3.0

};

module Algorithm {

/* This interface represents the fill management interface for
algorithm fills. */

interface Manager : Fill::Manager {
};

};

module Transec {

/* This structure defines the channel configuration parameters
for a type 1 transec channel. */

struct ChannelConfigType {
/* Identifies the transec algorithm. */
IdType algorithm;
/* Identifies the transec key. */
IdType key;

};

exception InvalidChannelId {
};

exception InvalidSeedType {
};

exception InvalidSeedValue {
};

/* This interface represents the fill management interface for
transec fills. */

interface Manager : Fill::Manager {
exception DuplicateId {
};

/* Store the fill data with the name provided in ID.
@roseuid 39E3641B0194 */
void storeTransec (

in IdType id
)
raises (DuplicateId, InvalidId);

/* Get the type 2 transec fill data identified by ID.
@roseuid 39E35DDB01F8 */
void getTransecUFill (

in IdType id,
out CF::OctetSequence fill
)
raises (InvalidId);

 D-7

 JTRS-5000SEC
Security API Service Definition

rev. 3.0
};

/* This interface is used for creating and destroying type 1
transec channels. */

interface Controller {
exception InvalidAlgorithmId {
};

exception InvalidKeyId {
};

exception NotTRANSECAlgorithm {
};

exception ResourcesUnavailable {
};

exception KeyAlgorithmMismatch {
};

/* This operation instantiates a type 1 transec channel.
@roseuid 39E72FC4008C */
ChannelIdType createTransecCChannel (

in ChannelConfigType configInfo
)
raises

(InvalidAlgorithmId,InvalidKeyId,KeyAlgorithmMismatch,NotTRANSECAlgorithm,Res
ourcesUnavailable);

/* This operation gets the configuration of a type 1
transec channel.

@roseuid 39E735ED010C */
void getTransecCChannelConfig (

in IdType channel,
out ChannelConfigType configInfo
)
raises (InvalidChannelId);

/* This operation destroys a type one transec channel.
@roseuid 39F0AC530002 */
void destroyTransecCChannel (

in ChannelIdType channel
)
raises (InvalidChannelId);

};

/* This interface is used for generating type 1 transec key
streams. */

interface Provider {
exception ChannelInAlarm {
};

exception DeviceError {

 D-8

 JTRS-5000SEC
Security API Service Definition

rev. 3.0
};

exception UnknownError {
};

/* Generate a type 1 transec key stream with a new seed.
@roseuid 39E73749006C */
void genKeyStream (

in ChannelIdType channel,
in any seed,
in unsigned long numBits,
out CF::OctetSequence keyStream
)
raises (ChannelInAlarm, DeviceError,

InvalidChannelId, InvalidSeedType, InvalidSeedValue, UnknownError);

/* Generate a type 1 transec key stream without reseeding
the algorithm.

@roseuid 39E73849034F */
void genNextKeyStream (

in ChannelIdType channel,
in unsigned long numbits,
out CF::OctetSequence keyStream
)
raises (ChannelInAlarm, DeviceError,

InvalidChannelId, UnknownError);

};

};

module Alarm {

/* This enum defines the type of security alarm that will be
generated as an audit event. */

enum EventType {
AE_INTEGRITY_VIOLATION,
AE_OPERATIONAL_VIOLATION,
AE_PHYSICAL_VIOLATION,
AE_SERVICE_VIOLATION,
AE_TIME_DOMAIN_VIOLATION

};

/* This enum defines the severity of the alarm event. */

enum SeverityType {
AS_INDETERMINATE,
AS_CRITICAL,
AS_MAJOR,
AS_MINOR,
AS_WARNING

};

/* This is enum indicates the cause of the crypto alarm. */

 D-9

 JTRS-5000SEC
Security API Service Definition

rev. 3.0
enum CauseType {

AC_DUPLICATE_INFO,
AC_INFO_MISSING,
AC_INFO_MOD_DETECTED,
AC_INFO_OUT_OF_SEQUENCE,
AC_UNEXPECTED_INFO,
AC_DENIAL_OF_SERVICE,
AC_OUT_OF_SERVICE,
AC_PROCEDURAL_ERROR,
AC_UNSPECIFIED_REASON,
AC_CABLE_TAMPER,
AC_INTRUSION_DETECTION,
AC_AUTHENTICATION_FAILURE,
AC_BREACH_OF_CONFIDENTIALITY,
AC_NON_REPUDIATION_FAILURE,
AC_UNAUTHORIZED_ACCESS_ATTEMPT,
AC_DELAYED_INFO,
AC_KEY_EXPIRED,
AC_OUT_OF_HOURS_ACTIVITY

};

/* This is a preliminary definition of an alarm record for an
audit log. */

struct RecordType {
EventType event;
CauseType cause;
SeverityType severity;
string serviceUser;
string serviceProvider;
string additionalInfo;
string alarmDetector;

};

/* This interface is implemented by the user of a the security
service to receive alarm indications. */

interface User {
/* This operation signals the user that a crypto alarm has

occurred.
@roseuid 39E47E7500CD */
void signalAlarm (

in string qualifier
);

};

};

module Crypto {

/* Identifies how a channel is configured. */

enum ChannelType {
CT_SIMPLEX_RX, /* Receive only operation. */

 D-10

 JTRS-5000SEC
Security API Service Definition

rev. 3.0
CT_HALF_DUPLEX, /* The channel supports both

transmit and receive but only one at a time (the crypto will context switch
between receive and transmit portions of algorithm. */

CT_FULL_DUPLEX, /* The channel is configured
for simultaneous receive and transmit (e.g. not context switching). */

CT_BLACK_SIDE, /* This configures a channel
for black-black encrypt and decrypt (e.g. DAMA orderwire, loading of
classified waveforms). */

CT_RED_SIDE /* This configures a channel for
red-red encrypt and decrypt. */

};

/* This structure is used to configure the crypto for operation
and to indicate the configuration of an instantiated channel. */

struct ChannelConfigType {
/* The channel type. Can translate into multiple channels

internally to the crypto device. (e.g. full duplex(. */
ChannelType type;
/* The ID of the crypto algorithm to use for the channel.

*/
IdType algorithm;
/* The key(s) to use for the channel. Certain waveforms

require the use of multiple keys. */
IdSequenceType keys;
/* Only valid for CT_BUSS_FILL */
IdType certificate;
/* The set of modes in which the algorithm will operate. */
CF::StringSequence modes;
/* The set of properties for the algorithm such as straps,

seed, etc. */
CF::Properties properties;
IdType bypassPolicy;

};

interface SingleChannel {
/*
@roseuid 3A04198A01B8 */
oneway void transform (

in any bypass,
in CF::OctetSequence payload
);

};

interface MultiChannel {
/*
@roseuid 3A09586D02B7 */
oneway void transform (

in ChannelIdType channel,
in any bypass,
in CF::OctetSequence payload
);

};

 D-11

 JTRS-5000SEC
Security API Service Definition

rev. 3.0
exception ChannelInAlarm {
};

exception DeviceError {
};

exception InvalidChannelId {
};

exception UnknownError {
};

/* This interface supports black-black and red-red encryption and
decryption only. Baseband data uses an instantiation of the

packet interface for red-black encryption and black-red
decryption. */

interface MultiChannelSingleSided {
/* Encrypt data using instantiated channel and return in

the same octet sequence.
@roseuid 39E7175B00F4 */
void Encrypt (

in ChannelIdType channel,
inout CF::OctetSequence data
)
raises (ChannelInAlarm, DeviceError,

InvalidChannelId, UnknownError);

/* Decrypt data using instantiated channel and return in
the same octet sequence.

@roseuid 39E71796030C */
void Decrypt (

in ChannelIdType channel,
inout CF::OctetSequence data
)
raises (ChannelInAlarm, DeviceError,

InvalidChannelId, UnknownError);

};

/* This interface supports black-black and red-red encryption and
decryption only. Baseband data uses an instantiation of the

packet interface for red-black encryption and black-red
decryption. */

interface SingleChannelSingleSided {
/* Encrypt data using instantiated channel and return in

the same octet sequence.
@roseuid 3A082E5403B8 */
void Encrypt (

inout CF::OctetSequence data
)
raises (ChannelInAlarm, DeviceError, UnknownError);

/* Decrypt data using instantiated channel and return in
the same octet sequence.

 D-12

 JTRS-5000SEC
Security API Service Definition

rev. 3.0
@roseuid 3A082E5403CD */
void Decrypt (

inout CF::OctetSequence data
)
raises (ChannelInAlarm, DeviceError, UnknownError);

};

/* This interface supports crypto channel creation and
destruction. */

interface Controller {
exception AssuranceLevel {
};

exception InvalidKeyId {
};

exception InvalidAlgorithmId {
};

exception InvalidMode {
};

exception InvalidProperty {
};

exception ChannelAlreadyStarted {
};

exception ChannelNotStarted {
};

exception InvalidCertificateId {
};

exception CertificateNotRequired {
};

exception ChanTypeAlgorithmMismatch {
};

exception InvalidPolicyId {
};

exception NotCOMSECAlgorithm {
};

exception ResourcesUnavailable {
};

exception KeyAlgorithmMismatch {
};

exception KeyExpired {
};

 D-13

 JTRS-5000SEC
Security API Service Definition

rev. 3.0

/* Creates a crypto channel and returns a channel ID.
@roseuid 39DA02E70354 */
ChannelIdType createChannel (

in ChannelConfigType configInfo
)
raises (AssuranceLevel, CertificateNotRequired,

ChanTypeAlgorithmMismatch, DeviceError, InvalidAlgorithmId,
InvalidCertificateId, InvalidKeyId, InvalidMode, InvalidPolicyId,
InvalidProperty, KeyAlgorithmMismatch, NotCOMSECAlgorithm,
ResourcesUnavailable, UnknownError);

/* Destroys an instantiated crypto channel.
@roseuid 39DA030500E0 */
void destroyChannel (

in ChannelIdType channel
)
raises (InvalidChannelId,UnknownError);

/* Gets the configuration of an instantiated crypto
channel.

@roseuid 39E36EF80052 */
void getChannelConfig (

in ChannelIdType channel,
out ChannelConfigType configInfo
)
raises (InvalidChannelId);

/*
@roseuid 3A045106027B */
void startChannel (

in ChannelIdType channel,
in string mode
)
raises

(ChannelAlreadyStarted,DeviceError,InvalidChannelId,InvalidMode,UnknownError)
;

/*
@roseuid 3A04511F0262 */
void stopChannel (

in ChannelIdType channel,
in string mode
)
raises

(ChannelNotStarted,DeviceError,InvalidChannelId,InvalidMode,UnknownError);

/*
@roseuid 3A0451260032 */
void resetChannel (

in ChannelIdType channel
)
raises (DeviceError,InvalidChannelId,UnknownError);

/*
@roseuid 3A04524E0128 */

 D-14

 JTRS-5000SEC
Security API Service Definition

rev. 3.0
void resetCrypto ();

};

};

module Certificate {

/* This is the interface for management of certificate fills. */

interface Manager : Fill::Manager {
};

};

module Policy {

interface Manager : Fill::Manager {
/*
@roseuid 39EF73350292 */
CORBA::Policy getPolicy (

in IdType id
)
raises (InvalidId);

};

interface AccessControlPolicy : CORBA::Policy {
};

};

module Time {

interface Manager {
exception InvalidValue {
};

/*
@roseuid 3A04573F02FD */
void setTime (

in TODType time
)
raises (InvalidValue);

/*
@roseuid 3A045747036D */
TODType getTime ();

/*
@roseuid 3A04575200C0 */
void setDate (

in DateType date
)
raises (InvalidValue);

 D-15

 JTRS-5000SEC
Security API Service Definition

rev. 3.0
/*
@roseuid 3A04575702C6 */
DateType getDate ();

};

};

module GPS {

interface Manager : Transec::Manager {
};

};

};

#endif

 D-16

JTRS-5000SEC
Security API Service Definition

rev. 3.0

 JTRS-5000SEC
Security API Service Definition

rev. 3.0

	INTRODUCTION.
	OVERVIEW.
	MODES OF SERVICE.
	Fill Modes.
	DS-101 Fill Mode.
	DS-102 Fill Mode.
	RS-232 Fill Mode.
	Bus Fill Mode.

	Crypto Channel Modes.
	Simplex Receive Mode.
	Half-Duplex Mode.
	Full-Duplex Mode.
	Red Side Mode.
	Black Side Mode.

	SERVICE STATES.
	REFERENCED DOCUMENTS.

	UUID.
	SERVICES.
	GAINING ACCESS TO SECURITY SERVICES.
	SECURITY.
	Management.

	FILL.
	Port and Port User Services.
	Bus Service.
	Management Service.

	ALGORITHM.
	Management Service

	CERTIFICATE.
	Management Service.

	CRYPTO.
	Control Service.
	Encrypt/Decrypt Service.

	KEY.
	Management Service.

	TRANSEC.
	Control Service.
	Key Stream Service.
	Management Service.

	POLICY.
	Management Service.

	INTEGRITY AND AUTHENTICATION.
	Control and Digital Signatures Provider Services.

	ALARM.
	User.

	TIME.
	Management Service.

	GPS.
	Management.

	SERVICE PRIMITIVES.
	SECURITY.
	ZEROIZE_ALL.
	Synopsis.
	Parameters.
	State.
	New State.
	Response.
	Originator.
	Errors/Exceptions.

	FILL.
	FILL_PORT_CONFIGURE.
	Synopsis.
	Parameters.
	State.
	New State.
	Response.
	Originator.
	Errors/Exceptions.

	FILL_PORT_ENABLE.
	Synopsis.
	Parameters.
	State.
	New State.
	Response.
	Originator.
	Errors/Exceptions.

	FILL_PORT_DISABLE.
	Synopsis.
	Parameters.
	State.
	New State.
	Response.
	Originator.
	Errors/Exceptions.

	FILL_PORT_LOAD.
	Synopsis.
	Parameters.
	State.
	New State.
	Response.
	Originator.
	Errors/Exceptions.

	FILL_PORT_SIGNAL_CONNECT.
	Synopsis.
	Parameters.
	State.
	New State.
	Response.
	Originator.
	Errors/Exceptions.

	FILL_PORT_SIGNAL_LOAD.
	Synopsis.
	Parameters.
	State.
	New State.
	Response.
	Originator.
	Errors/Exceptions.

	FILL_PORT_SIGNAL_ASSIGN_ID.
	Synopsis.
	Parameters.
	State.
	New State.
	Response.
	Originator.
	Errors/Exceptions.

	FILL_BUS_LOAD.
	Synopsis.
	Parameters.
	State.
	New State.
	Response.
	Originator.
	Errors/Exceptions.

	FILL_ZEROIZE.
	Synopsis.
	Parameters.
	State.
	New State.
	Response.
	Originator.
	Errors/Exceptions

	FILL_ZEROIZE_ALL.
	Synopsis.
	Parameters.
	State.
	New State.
	Response.
	Originator.
	Errors/Exceptions.

	FILL_GET_IDS.
	Synopsis.
	Parameters.
	State.
	New State.
	Response.
	Originator.
	Errors/Exceptions.

	FILL_EXPIRY.
	Synopsis.
	Parameters.
	State.
	New State.
	Response.
	Originator.
	Errors/Exceptions.

	ALGORITHM.
	ALG_ZEROIZE.
	ALG_ZEROIZE_ALL.
	ALG_GET_IDS.
	ALG_EXPIRY.

	CERTIFICATE.
	CERT_ZEROIZE.
	CERT_ZEROIZE_ALL.
	CERT_GET_IDS.
	CERT_EXPIRY.

	CRYPTO.
	CRYPT_CREATE_CHAN.
	Synopsis.
	Parameters.
	State.
	New State.
	Response.
	Originator.
	Errors/Exceptions.

	CRYPT_GET_CHAN_CONFIG.
	Synopsis.
	Parameters.
	State.
	New State.
	Response.
	Originator.
	Errors/Exceptions.

	CRYPT_DESTROY_CHAN.
	Synopsis.
	Parameters.
	State.
	New State.
	Response.
	Originator.
	Errors/Exceptions.

	CRYPT_START_CHAN.
	Synopsis.
	Parameters.
	State.
	New State.
	Response.
	Originator.
	Errors/Exceptions.

	CRYPT_STOP_CHAN.
	Synopsis.
	Parameters.
	State.
	New State.
	Response.
	Originator.
	Errors/Exceptions.

	CRYPT_RESET_CHAN.
	Synopsis.
	Parameters.
	State.
	New State.
	Response.
	Originator.
	Errors/Exceptions.

	CRYPT_RESET.
	Synopsis.
	Parameters.
	State.
	New State.
	Response.
	Originator.
	Errors/Exceptions.

	CRYPT_ENCRYPT.
	Synopsis.
	Parameters.
	State.
	New State.
	Response.
	Originator.
	Errors/Exceptions.

	CRYPT_DECRYPT.
	Synopsis.
	Parameters.
	State.
	New State.
	Response.
	Originator.
	Errors/Exceptions.

	CRYPT_ENCRYPT_WITH_ID.
	Synopsis.
	Parameters.
	State.
	New State.
	Response.
	Originator.
	Errors/Exceptions.

	CRYPT_DECRYPT_WITH_ID.
	Synopsis.
	Parameters.
	State.
	New State.
	Response.
	Originator.
	Errors/Exceptions.

	CRYPT_TRANSFORM_REQ.
	Synopsis.
	Parameters.
	State.
	New State.
	Response.
	Originator.
	Errors/Exceptions.

	CRYPT_TRANSFORM_REQ_WITH_ID.
	Synopsis.
	Parameters.
	State.
	New State.
	Response.
	Originator.
	Errors/Exceptions.

	KEY.
	KEY_ZEROIZE.
	KEY_ZEROIZE_ALL.
	KEY_GET_IDS.
	KEY_EXPIRY.
	KEY_UPDATE.
	Synopsis.
	Parameters.
	State.
	New State.
	Response.
	Originator.
	Errors/Exceptions.

	KEY_GET_UPDATE_COUNT.
	Synopsis.
	Parameters.
	State.
	New State.
	Response.
	Originator.
	Errors/Exceptions.

	KEY_STORE_KEY.
	Synopsis.
	Parameters.
	State.
	New State.
	Response.
	Originator.
	Errors/Exceptions.

	TRANSEC.
	TRAN_CREATE_CHAN.
	Synopsis.
	Parameters.
	State.
	New State.
	Response.
	Originator.
	Errors/Exceptions.

	TRAN_GET_CHAN_CONFIG.
	Synopsis.
	Parameters.
	State.
	New State.
	Response.
	Originator.
	Errors/Exceptions.

	TRAN_DESTROY_CHAN.
	Synopsis.
	Parameters.
	State.
	New State.
	Response.
	Originator.
	Errors/Exceptions.

	TRAN_GEN_KEY_STREAM.
	Synopsis.
	Parameters.
	State.
	New State.
	Response.
	Originator.
	Errors/Exceptions.

	TRAN_GEN_NEXT_KEY_STREAM.
	Synopsis.
	Parameters.
	State.
	New State.
	Response.
	Originator.
	Errors/Exceptions.

	TRAN_ZEROIZE.
	TRAN_ZEROIZE_ALL.
	TRAN_GET_IDS.
	TRAN_EXPIRY.
	TRAN_STORE.
	Synopsis.
	Parameters.
	State.
	New State.
	Response.
	Originator.
	Errors/Exceptions.

	TRAN_GET_FILL.
	Synopsis.
	Parameters.
	State.
	New State.
	Response.
	Originator.
	Errors/Exceptions.

	POLICY.
	POL_ZEROIZE.
	POL_ZEROIZE_ALL.
	POL_GET_IDS.
	POL_EXPIRY.
	POL_GET_POLICY.
	Synopsis.
	Parameters.
	State.
	New State.
	Response.
	Originator.
	Errors/Exceptions.

	INTEGRITY AND AUTHENTICATION.
	IA_CREATE_CONTEXT.
	Synopsis.
	Parameters.
	State.
	New State.
	Response.
	Originator.
	Errors/Exceptions.

	IA_DESTROY_CONTEXT .
	Synopsis.
	Parameters.
	State.
	New State.
	Response.
	Originator.
	Errors/Exceptions.

	IA_SIGN_FILE.
	Synopsis.
	Parameters.
	State.
	New State.
	Response.
	Originator.
	Errors/Exceptions.

	IA_VERIFY_FILE.
	Synopsis.
	Parameters.
	State.
	New State.
	Response.
	Originator.
	Errors/Exceptions.

	IA_HASH.
	Synopsis.
	Parameters.
	State.
	New State.
	Response.
	Originator.
	Errors/Exceptions.

	IA_SIGN_HASH.
	Synopsis.
	Parameters.
	State.
	New State.
	Response.
	Originator.
	Errors/Exceptions.

	IA_VERIFY_HASH.
	Synopsis.
	Parameters.
	State.
	New State.
	Response.
	Originator.
	Errors/Exceptions.

	ALARM.
	ALARM_SIGNAL.
	Synopsis.
	Parameters.
	State.
	New State.
	Response.
	Originator.
	Errors/Exceptions.

	TIME.
	TIME_SET_TOD
	Synopsis.
	Parameters.
	State.
	New State.
	Response.
	Originator.
	Errors/Exceptions.

	TIME_GET_TOD.
	Synopsis.
	Parameters.
	State.
	New State.
	Response.
	Originator.
	Errors/Exceptions.

	TIME_SET_DATE.
	Synopsis.
	Parameters.
	State.
	New State.
	Response.
	Originator.
	Errors/Exceptions.

	TIME_GET_DATE.
	Synopsis.
	Parameters.
	State.
	New State.
	Response.
	Originator.
	Errors/Exceptions.

	GPS.
	GPS_ZEROIZE.
	GPS_ZEROIZE_ALL.
	GPS_GET_IDS.
	GPS_EXPIRY.

	ALLOWABLE SEQUENCE OF SERVICE PRIMITIVES.
	FILL STATES.
	CRYPTO CHANNEL STATES.
	TRANSEC CHANNEL STATES.
	INTEGRITY AND AUTHENTICATION STATES.

